Vai al contenuto principale della pagina
Autore: | Andrews Ben |
Titolo: | The Ricci flow in Riemannian geometry : a complete proof of the differentiable 1/4-pinching sphere theorem / / by Ben Andrews, Christopher Hopper |
Pubblicazione: | Heidelberg, : Springer-Verlag Berlin Heidelberg, 2010 |
Edizione: | 1st ed. 2011. |
Descrizione fisica: | 1 online resource (XVIII, 302 p. 13 illus., 2 illus. in color.) |
Disciplina: | 516.3/62 |
Soggetto topico: | Ricci flow |
Geometry, Riemannian | |
Differentiable dynamical systems | |
Differential equations, Partial | |
Global differential geometry | |
Altri autori: | HopperChristopher |
Note generali: | Bibliographic Level Mode of Issuance: Monograph |
Nota di bibliografia: | Includes bibliographical references and index. |
Nota di contenuto: | 1 Introduction -- 2 Background Material -- 3 Harmonic Mappings -- 4 Evolution of the Curvature -- 5 Short-Time Existence -- 6 Uhlenbeck’s Trick -- 7 The Weak Maximum Principle -- 8 Regularity and Long-Time Existence -- 9 The Compactness Theorem for Riemannian Manifolds -- 10 The F-Functional and Gradient Flows -- 11 The W-Functional and Local Noncollapsing -- 12 An Algebraic Identity for Curvature Operators -- 13 The Cone Construction of Böhm and Wilking -- 14 Preserving Positive Isotropic Curvature -- 15 The Final Argument. |
Sommario/riassunto: | This book focuses on Hamilton's Ricci flow, beginning with a detailed discussion of the required aspects of differential geometry, progressing through existence and regularity theory, compactness theorems for Riemannian manifolds, and Perelman's noncollapsing results, and culminating in a detailed analysis of the evolution of curvature, where recent breakthroughs of Böhm and Wilking and Brendle and Schoen have led to a proof of the differentiable 1/4-pinching sphere theorem. |
Titolo autorizzato: | The Ricci flow in Riemannian geometry |
ISBN: | 3-642-16286-X |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910484396803321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |