|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910484396803321 |
|
|
Autore |
Andrews Ben |
|
|
Titolo |
The Ricci flow in Riemannian geometry : a complete proof of the differentiable 1/4-pinching sphere theorem / / by Ben Andrews, Christopher Hopper |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Heidelberg, : Springer-Verlag Berlin Heidelberg, 2010 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2011.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (XVIII, 302 p. 13 illus., 2 illus. in color.) |
|
|
|
|
|
|
Collana |
|
Lecture notes in mathematics, , 0075-8434 ; ; 2011 |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Ricci flow |
Geometry, Riemannian |
Differentiable dynamical systems |
Differential equations, Partial |
Global differential geometry |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Bibliographic Level Mode of Issuance: Monograph |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
1 Introduction -- 2 Background Material -- 3 Harmonic Mappings -- 4 Evolution of the Curvature -- 5 Short-Time Existence -- 6 Uhlenbeck’s Trick -- 7 The Weak Maximum Principle -- 8 Regularity and Long-Time Existence -- 9 The Compactness Theorem for Riemannian Manifolds -- 10 The F-Functional and Gradient Flows -- 11 The W-Functional and Local Noncollapsing -- 12 An Algebraic Identity for Curvature Operators -- 13 The Cone Construction of Böhm and Wilking -- 14 Preserving Positive Isotropic Curvature -- 15 The Final Argument. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This book focuses on Hamilton's Ricci flow, beginning with a detailed discussion of the required aspects of differential geometry, progressing through existence and regularity theory, compactness theorems for Riemannian manifolds, and Perelman's noncollapsing results, and culminating in a detailed analysis of the evolution of curvature, where recent breakthroughs of Böhm and Wilking and Brendle and Schoen have led to a proof of the differentiable 1/4-pinching sphere theorem. |
|
|
|
|
|
|
|