Vai al contenuto principale della pagina

Two-dimensional Two-product Cubic Systems, Vol I : Different Product Structure Vector Fields / / by Albert C. J. Luo



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Luo Albert C. J. Visualizza persona
Titolo: Two-dimensional Two-product Cubic Systems, Vol I : Different Product Structure Vector Fields / / by Albert C. J. Luo Visualizza cluster
Pubblicazione: Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Edizione: 1st ed. 2024.
Descrizione fisica: 1 online resource (342 pages)
Disciplina: 512.82
Soggetto topico: Dynamics
Nonlinear theories
Engineering mathematics
Engineering - Data processing
Multibody systems
Vibration
Mechanics, Applied
Algebra, Universal
Applied Dynamical Systems
Mathematical and Computational Engineering Applications
Multibody Systems and Mechanical Vibrations
General Algebraic Systems
Note generali: Includes index.
Nota di contenuto: Chapter 1 Cubic Systems with Two different Product Structures -- Chapter 2 Parabola-saddle and Saddle-source (sink) Singularity -- Chapter 3 Inflection-source (sink) flows and parabola-saddles -- Chapter 4Saddle-source (sink) with hyperbolic flow singularity -- Chapter 5 Equilibrium matrices with hyperbolic flows.
Sommario/riassunto: This book, the ninth of 15 related monographs, discusses a two product-cubic dynamical system possessing different product-cubic structures and the equilibrium and flow singularity and bifurcations for appearing and switching bifurcations. The appearing bifurcations herein are parabola-saddles, saddle-sources (sinks), hyperbolic-to-hyperbolic-secant flows, and inflection-source (sink) flows. The switching bifurcations for saddle-source (sink) with hyperbolic-to-hyperbolic-secant flows and parabola-saddles with inflection-source (sink) flows are based on the parabola-source (sink), parabola-saddles, inflection-saddles infinite-equilibriums. The switching bifurcations for the network of the simple equilibriums with hyperbolic flows are parabola-saddles and inflection-source (sink) on the inflection-source and sink infinite-equilibriums. Readers will learn new concepts, theory, phenomena, and analysis techniques. · Two-different product-cubic systems · Hybrid networks of higher-order equilibriums and flows · Hybrid series of simple equilibriums and hyperbolic flows · Higher-singular equilibrium appearing bifurcations · Higher-order singular flow appearing bifurcations · Parabola-source (sink) infinite-equilibriums · Parabola-saddle infinite-equilibriums · Inflection-saddle infinite-equilibriums · Inflection-source (sink) infinite-equilibriums · Infinite-equilibrium switching bifurcations. Develops a theory of nonlinear dynamics and singularity of two-different product-cubic dynamical systems; Presents networks of singular and simple equilibriums and hyperbolic flows in such different structure product-cubic systems; Reveals network switching bifurcations through infinite-equilibriums of parabola-source (sink) and parabola-saddles.
Titolo autorizzato: Two-dimensional Two-product Cubic Systems, Vol I  Visualizza cluster
ISBN: 9783031484872
3031484878
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910903799403321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui