LEADER 04343nam 22007215 450 001 9910903799403321 005 20250808093414.0 010 $a9783031484872 010 $a3031484878 024 7 $a10.1007/978-3-031-48487-2 035 $a(MiAaPQ)EBC31755507 035 $a(Au-PeEL)EBL31755507 035 $a(CKB)36514421400041 035 $a(DE-He213)978-3-031-48487-2 035 $a(EXLCZ)9936514421400041 100 $a20241105d2024 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aTwo-dimensional Two-product Cubic Systems, Vol I $eDifferent Product Structure Vector Fields /$fby Albert C. J. Luo 205 $a1st ed. 2024. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2024. 215 $a1 online resource (342 pages) 300 $aIncludes index. 311 08$a9783031484865 311 08$a303148486X 327 $aChapter 1 Cubic Systems with Two different Product Structures -- Chapter 2 Parabola-saddle and Saddle-source (sink) Singularity -- Chapter 3 Inflection-source (sink) flows and parabola-saddles -- Chapter 4Saddle-source (sink) with hyperbolic flow singularity -- Chapter 5 Equilibrium matrices with hyperbolic flows. 330 $aThis book, the ninth of 15 related monographs, discusses a two product-cubic dynamical system possessing different product-cubic structures and the equilibrium and flow singularity and bifurcations for appearing and switching bifurcations. The appearing bifurcations herein are parabola-saddles, saddle-sources (sinks), hyperbolic-to-hyperbolic-secant flows, and inflection-source (sink) flows. The switching bifurcations for saddle-source (sink) with hyperbolic-to-hyperbolic-secant flows and parabola-saddles with inflection-source (sink) flows are based on the parabola-source (sink), parabola-saddles, inflection-saddles infinite-equilibriums. The switching bifurcations for the network of the simple equilibriums with hyperbolic flows are parabola-saddles and inflection-source (sink) on the inflection-source and sink infinite-equilibriums. Readers will learn new concepts, theory, phenomena, and analysis techniques. · Two-different product-cubic systems · Hybrid networks of higher-order equilibriums and flows · Hybrid series of simple equilibriums and hyperbolic flows · Higher-singular equilibrium appearing bifurcations · Higher-order singular flow appearing bifurcations · Parabola-source (sink) infinite-equilibriums · Parabola-saddle infinite-equilibriums · Inflection-saddle infinite-equilibriums · Inflection-source (sink) infinite-equilibriums · Infinite-equilibrium switching bifurcations. Develops a theory of nonlinear dynamics and singularity of two-different product-cubic dynamical systems; Presents networks of singular and simple equilibriums and hyperbolic flows in such different structure product-cubic systems; Reveals network switching bifurcations through infinite-equilibriums of parabola-source (sink) and parabola-saddles. 606 $aDynamics 606 $aNonlinear theories 606 $aEngineering mathematics 606 $aEngineering$xData processing 606 $aMultibody systems 606 $aVibration 606 $aMechanics, Applied 606 $aAlgebra, Universal 606 $aApplied Dynamical Systems 606 $aMathematical and Computational Engineering Applications 606 $aMultibody Systems and Mechanical Vibrations 606 $aGeneral Algebraic Systems 615 0$aDynamics. 615 0$aNonlinear theories. 615 0$aEngineering mathematics. 615 0$aEngineering$xData processing. 615 0$aMultibody systems. 615 0$aVibration. 615 0$aMechanics, Applied. 615 0$aAlgebra, Universal. 615 14$aApplied Dynamical Systems. 615 24$aMathematical and Computational Engineering Applications. 615 24$aMultibody Systems and Mechanical Vibrations. 615 24$aGeneral Algebraic Systems. 676 $a512.82 700 $aLuo$b Albert C. J.$0720985 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910903799403321 996 $aTwo-dimensional Two-product Cubic Systems, Vol I$94435673 997 $aUNINA