Vai al contenuto principale della pagina
| Autore: |
Bujalance Emilio
|
| Titolo: |
Symmetries of Compact Riemann Surfaces [[electronic resource] /] / by Emilio Bujalance, Francisco Javier Cirre, José Manuel Gamboa, Grzegorz Gromadzki
|
| Pubblicazione: | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2010 |
| Edizione: | 1st ed. 2010. |
| Descrizione fisica: | 1 online resource (XX, 164 p.) |
| Disciplina: | 515.9 |
| Soggetto topico: | Functions of complex variables |
| Algebraic geometry | |
| Group theory | |
| Topology | |
| Functions of a Complex Variable | |
| Algebraic Geometry | |
| Group Theory and Generalizations | |
| Persona (resp. second.): | CirreFrancisco Javier |
| GamboaJosé Manuel (Gamboa Mutuberría) | |
| GromadzkiGrzegorz | |
| Note generali: | Bibliographic Level Mode of Issuance: Monograph |
| Nota di bibliografia: | Includes bibliographical references (p. 151-155) and index. |
| Nota di contenuto: | Preliminaries -- On the Number of Conjugacy Classes of Symmetries of Riemann Surfaces -- Counting Ovals of Symmetries of Riemann Surfaces -- Symmetry Types of Some Families of Riemann Surfaces -- Symmetry Types of Riemann Surfaces with a Large Group of Automorphisms. |
| Sommario/riassunto: | This monograph deals with symmetries of compact Riemann surfaces. A symmetry of a compact Riemann surface S is an antianalytic involution of S. It is well known that Riemann surfaces exhibiting symmetry correspond to algebraic curves which can be defined over the field of real numbers. In this monograph we consider three topics related to the topology of symmetries, namely the number of conjugacy classes of symmetries, the numbers of ovals of symmetries and the symmetry types of Riemann surfaces. |
| Titolo autorizzato: | Symmetries of compact riemann surfaces ![]() |
| ISBN: | 1-280-39185-5 |
| 9786613569776 | |
| 3-642-14828-X | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 996466522903316 |
| Lo trovi qui: | Univ. di Salerno |
| Opac: | Controlla la disponibilità qui |