LEADER 03629nam 22007215 450 001 996466522903316 005 20210720125109.0 010 $a1-280-39185-5 010 $a9786613569776 010 $a3-642-14828-X 024 7 $a10.1007/978-3-642-14828-6 035 $a(CKB)2670000000045335 035 $a(SSID)ssj0000450393 035 $a(PQKBManifestationID)11313377 035 $a(PQKBTitleCode)TC0000450393 035 $a(PQKBWorkID)10444036 035 $a(PQKB)11152733 035 $a(DE-He213)978-3-642-14828-6 035 $a(MiAaPQ)EBC3065932 035 $a(PPN)149027117 035 $a(EXLCZ)992670000000045335 100 $a20100929d2010 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aSymmetries of Compact Riemann Surfaces$b[electronic resource] /$fby Emilio Bujalance, Francisco Javier Cirre, José Manuel Gamboa, Grzegorz Gromadzki 205 $a1st ed. 2010. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2010. 215 $a1 online resource (XX, 164 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v2007 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-642-14827-1 320 $aIncludes bibliographical references (p. 151-155) and index. 327 $aPreliminaries -- On the Number of Conjugacy Classes of Symmetries of Riemann Surfaces -- Counting Ovals of Symmetries of Riemann Surfaces -- Symmetry Types of Some Families of Riemann Surfaces -- Symmetry Types of Riemann Surfaces with a Large Group of Automorphisms. 330 $aThis monograph deals with symmetries of compact Riemann surfaces. A symmetry of a compact Riemann surface S is an antianalytic involution of S. It is well known that Riemann surfaces exhibiting symmetry correspond to algebraic curves which can be defined over the field of real numbers. In this monograph we consider three topics related to the topology of symmetries, namely the number of conjugacy classes of symmetries, the numbers of ovals of symmetries and the symmetry types of Riemann surfaces. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v2007 606 $aFunctions of complex variables 606 $aAlgebraic geometry 606 $aGroup theory 606 $aTopology 606 $aFunctions of a Complex Variable$3https://scigraph.springernature.com/ontologies/product-market-codes/M12074 606 $aAlgebraic Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M11019 606 $aGroup Theory and Generalizations$3https://scigraph.springernature.com/ontologies/product-market-codes/M11078 606 $aTopology$3https://scigraph.springernature.com/ontologies/product-market-codes/M28000 615 0$aFunctions of complex variables. 615 0$aAlgebraic geometry. 615 0$aGroup theory. 615 0$aTopology. 615 14$aFunctions of a Complex Variable. 615 24$aAlgebraic Geometry. 615 24$aGroup Theory and Generalizations. 615 24$aTopology. 676 $a515.9 700 $aBujalance$b Emilio$4aut$4http://id.loc.gov/vocabulary/relators/aut$0441093 702 $aCirre$b Francisco Javier$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aGamboa$b José Manuel$g(Gamboa Mutuberría)$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aGromadzki$b Grzegorz$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a996466522903316 996 $aSymmetries of compact riemann surfaces$9261762 997 $aUNISA