Vai al contenuto principale della pagina

Strong and Weak Approximation of Semilinear Stochastic Evolution Equations [[electronic resource] /] / by Raphael Kruse



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Kruse Raphael Visualizza persona
Titolo: Strong and Weak Approximation of Semilinear Stochastic Evolution Equations [[electronic resource] /] / by Raphael Kruse Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014
Edizione: 1st ed. 2014.
Descrizione fisica: 1 online resource (XIV, 177 p. 4 illus.)
Disciplina: 519.22
Soggetto topico: Numerical analysis
Probabilities
Partial differential equations
Numerical Analysis
Probability Theory and Stochastic Processes
Partial Differential Equations
Note generali: Bibliographic Level Mode of Issuance: Monograph
Nota di contenuto: Introduction -- Stochastic Evolution Equations in Hilbert Spaces -- Optimal Strong Error Estimates for Galerkin Finite Element Methods -- A Short Review of the Malliavin Calculus in Hilbert Spaces -- A Malliavin Calculus Approach to Weak Convergence -- Numerical Experiments -- Some Useful Variations of Gronwall’s Lemma -- Results on Semigroups and their Infinitesimal Generators -- A Generalized Version of Lebesgue’s Theorem -- References -- Index.
Sommario/riassunto: In this book we analyze the error caused by numerical schemes for the approximation of semilinear stochastic evolution equations (SEEq) in a Hilbert space-valued setting. The numerical schemes considered combine Galerkin finite element methods with Euler-type temporal approximations. Starting from a precise analysis of the spatio-temporal regularity of the mild solution to the SEEq, we derive and prove optimal error estimates of the strong error of convergence in the first part of the book. The second part deals with a new approach to the so-called weak error of convergence, which measures the distance between the law of the numerical solution and the law of the exact solution. This approach is based on Bismut’s integration by parts formula and the Malliavin calculus for infinite dimensional stochastic processes. These techniques are developed and explained in a separate chapter, before the weak convergence is proven for linear SEEq.
Titolo autorizzato: Strong and weak approximation of semilinear stochastic evolution equations  Visualizza cluster
ISBN: 3-319-02231-8
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 996198773803316
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Serie: Lecture Notes in Mathematics, . 0075-8434 ; ; 2093