Vai al contenuto principale della pagina

Solid Base Catalysts : Synthesis, Characterization, and Applications



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Tomar Ravi Visualizza persona
Titolo: Solid Base Catalysts : Synthesis, Characterization, and Applications Visualizza cluster
Pubblicazione: Newark : , : John Wiley & Sons, Incorporated, , 2025
©2025
Edizione: 1st ed.
Descrizione fisica: 1 online resource (377 pages)
Altri autori: PantK. K  
ChandraRamesh  
Nota di contenuto: Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction to Solid Base Catalyst -- 1.1 Introduction -- 1.2 History and Main Facts on Solid Base Catalysts -- 1.3 Literary Perspective of Solid Base Catalyst -- 1.4 Solid Basic Sites -- 1.5 Types of Solid Base Catalysts -- 1.5.1 Metal Oxides -- 1.5.1.1 Alkaline Earth Oxides -- 1.5.1.2 Zirconium Oxides -- 1.5.1.3 Rare Earth Oxides -- 1.5.1.4 Titanium Oxides -- 1.5.1.5 Zinc Oxide -- 1.5.1.6 Alumina -- 1.5.1.7 Mixed Oxides -- 1.5.1.8 Alkali Metal‐Loaded Metal Oxides -- 1.5.2 Zeolites -- 1.5.3 Mesoporous Materials -- 1.5.4 Clay Minerals (Hydrotalcite) -- 1.5.5 Oxynitride -- 1.5.6 Calcined Metal Phosphates -- 1.6 Why Solid Base Catalysts Have Fascinated the Scientific Community? -- 1.7 Advantages and Disadvantages of Solid Base Catalysts Over Inorganic/Organic Bases -- 1.8 Role of Solid Base Catalysts in Green Chemistry -- 1.9 Future Prospects for Solid Base Catalysts -- 1.10 Conclusion -- References -- Chapter 2 Synthesis of Solid Base Catalysts -- 2.1 Introduction -- 2.2 K2O/Al2O3-CaO -- 2.2.1 Preparation of K2O/Al2O3-CaO -- 2.2.1.1 Preparation of Al2O3-CaO Mixed Oxides Basic Support -- 2.2.1.2 Potassium Nitrate Loading with Calcined Mixed Oxides Basic Support -- 2.2.2 Catalytic Activity of K2O/Al2O3-CaO in the Knoevenagel Condensation Process for the Preparation of Benzylidene Barbituric and Benzylidenemalononitrile Derivatives -- 2.2.3 Catalytic Activity of K2O/Al2O3-CaO for the Preparation of Pyrano[2,3‐d]pyrimidinone Derivatives -- 2.3 Solid Base Fly Ash -- 2.3.1 Synthesis -- 2.3.2 Catalytic Activity of SBFA -- 2.3.3 Condensation Between Benzaldehyde and Cyclohexanone -- 2.3.4 Catalyst Regeneration -- 2.4 Calcined Water Sludge -- 2.4.1 Catalyst Preparation -- 2.5 Oxides of Rare Earth -- 2.5.1 Preparation -- 2.6 Titanium Dioxide -- 2.6.1 Preparation -- 2.7 Zinc Oxide.
2.7.1 Preparation -- 2.8 Alkaline Earth Oxides -- 2.8.1 Preparation -- 2.8.1.1 Conventional Method for MgO Catalyst -- 2.8.1.2 Effects of Starting Magnesium Salt -- 2.8.1.3 Preparation of MgO by Sol-Gel Method -- 2.8.1.4 Preparation of Mesoporous MgO -- 2.8.1.5 Catalytic Activity for Claisen-Schmidt Reaction -- 2.9 Hydrotalcite -- 2.9.1 Synthesis of Hydrotalcite -- 2.9.1.1 Coprecipitation Method -- 2.9.1.2 Sol-Gel Method -- 2.9.1.3 Michael Addition -- 2.10 Comparison of Different Solid Base Catalysts -- 2.11 Conclusion -- Conflicts of Interest -- Acknowledgment -- References -- Chapter 3 Advanced Characterization Techniques for Solid Base Catalysts: An Overview -- 3.1 Introduction -- 3.2 Traditional Characterization Techniques for Solid Base Catalyst -- 3.2.1 Titration Method -- 3.2.2 IR Analysis -- 3.2.3 Scanning Electron Microscopes -- 3.3 Advanced Characterization Techniques for Solid Base Catalyst -- 3.3.1 Fourier Transform Infrared Spectroscopy (FT‐IR) -- 3.3.2 Field Emission Scanning Electron Microscopes (FE‐SEM) -- 3.3.3 Transmission Electron Microscope (TEM) -- 3.3.4 X‐ray Diffraction (XRD) Analysis -- 3.3.5 Thermogravimetric Analysis (TGA) -- 3.3.6 Brunauer-Emmett-Teller BET Surface Area Pore Diameter Analysis [Gas Interaction and Surface Area Measurement: (Brunauer-Emmett-Teller (BET), Barrett-Joyner-Halenda (BJH) N2 Adsorption-Desorption Isotherms)] -- 3.3.7 X‐Ray Photoelectron Spectroscopy (XPS) -- 3.3.8 X‐Ray Fluorescence (XRF) -- 3.4 Protocol for Characterization of Catalyst -- 3.4.1 Sample Preparation -- 3.4.1.1 XRD -- 3.4.1.2 FT‐IR -- 3.4.1.3 FE‐SEM -- 3.4.1.4 TEM -- 3.4.1.5 BET -- 3.4.1.6 TGA -- 3.5 Characterization of Some Basic Sites of Solid Base Catalyst with Suitable Example -- 3.6 Conclusion -- Acknowledgment -- References -- Chapter 4 Advanced Solid Catalysis for Biomass Conversion into High Value‐Added Chemicals.
4.1 Introduction -- 4.2 Advanced Solid Catalysis -- 4.2.1 Types of Solid Catalysts -- 4.2.2 Methods for the Synthesis of Solid Catalysts -- 4.3 Biomass, Its Composition, and Properties -- 4.4 Biomass Conversion into High Value‐Added Chemicals -- 4.5 Utilization of Solid Catalysts for Biomass Conversion into High Value‐Added Chemicals -- 4.6 Electrocatalytic Conversion of Biomass into High Value‐Added Chemicals -- 4.7 Challenges in Design of Solid Catalysts for Biomass Conversion into High Value‐Added Chemicals -- 4.8 Advantages of High Value‐Added Chemicals -- 4.9 Summary and Future Prospectus -- Acknowledgments -- References -- Chapter 5 Applications of Solid Basic Catalysts for Organic Synthesis -- 5.1 Introduction -- 5.2 Solid‐Based Catalyst for Organic Synthesis -- 5.2.1 Metal Oxides -- 5.2.2 Zeolites -- 5.2.3 Clays -- 5.2.4 Solid‐Supported Basic Catalysts -- 5.3 Conclusion -- Consent for Publication -- Conflict of Interest -- Acknowledgment -- References -- Chapter 6 Multicomponent Reactions for Eco‐compatible Heterocyclic Synthesis Over Solid Base Catalysts -- 6.1 Introduction -- 6.2 Multicomponent Reactions (MCRs) -- 6.2.1 The Biginelli Multicomponent Reaction -- 6.2.2 The Hantzsch Multicomponent Reaction -- 6.2.3 The Mannich Multicomponent Reaction -- 6.2.4 The Passerini Multicomponent Reaction -- 6.2.5 The Ugi Multicomponent Reaction -- 6.2.6 The Gewald Multicomponent Reaction -- 6.3 Solid Base Catalysts for Organic Reactions -- 6.4 Characterization Techniques for Solid Base Catalysts -- 6.5 Heterocycle Synthesis Using Solid Base‐Catalyzed MCRs -- 6.6 Conclusion and Future Trends -- Acknowledgment -- References -- Chapter 7 Industrial Applications of Solid Base Catalysis -- 7.1 Introduction to Solid Base Catalysis -- 7.1.1 Definition and Characteristics of Solid Base Catalysts -- 7.1.2 Importance in Industrial Catalysis.
7.1.3 Comparison with Solid Acid Catalysts -- 7.2 Biodiesel Production -- 7.2.1 Transesterification Reactions -- 7.2.2 Catalysts and Mechanisms -- 7.2.3 Industrial‐scale Biodiesel Production -- 7.3 Hydrogenation and Dehydrogenation Reactions -- 7.3.1 Role of Solid Base Catalysts -- 7.3.2 Case Studies: Hydrogenation of Oils and Dehydrogenation of Hydrocarbons -- 7.3.3 Catalytic Mechanisms -- 7.4 Bimolecular Reactions -- 7.4.1 Dialkyl Carbonate Synthesis -- 7.4.2 Catalyst Selection and Reaction Pathways -- 7.4.3 Applications and Industrial Scale‐Up -- 7.5 Methanol and DME Synthesis -- 7.5.1 Importance of Methanol and DME -- 7.5.2 Catalysts and Reaction Conditions -- 7.5.3 Technological Advancements -- 7.6 Transesterification of Esters -- 7.6.1 Role in Chemical and Petrochemical Industries -- 7.6.1.1 Producing Biodiesel -- 7.6.1.2 Specialized Chemical Production -- 7.6.1.3 Procedures for Polymerization -- 7.6.1.4 Engineering Reactions and Catalysis -- 7.6.1.5 Resource Efficiency and Waste Reduction -- 7.6.2 Catalysts for Transesterification -- 7.7 Alkylation and Isomerization Reactions -- 7.7.1 Solid Base Catalysis in Petrochemical Processes -- 7.7.2 Environmental and Economic Implications -- 7.7.2.1 Economic Implications -- 7.8 Environmental Applications -- 7.8.1 Sulfur Removal from Flue Gas -- 7.8.2 NOx Reduction in Catalytic Converters -- 7.8.3 Waste Remediation and Pollution Control -- 7.9 Dehydration Reactions -- 7.9.1 Dehydration of Alcohols to Olefins -- 7.9.2 Dehydration of Alkanes -- 7.9.3 Industrial Significance and Process Optimization -- 7.10 Sulfur Removal in Fuel Refining -- 7.10.1 Hydrodesulfurization (HDS) Catalysts -- 7.10.2 Sulfur Removal Mechanisms -- 7.10.3 Impact on Clean Fuel Production -- 7.11 Processing Methods -- 7.11.1 Impregnation Method -- 7.11.2 Precipitation and Coprecipitation Method -- 7.11.3 Sol-Gel Method.
7.11.4 Hydrothermal Process -- 7.11.5 Vapor Phase Deposition Method -- 7.12 Use of Solid Base Catalyst in Various Industries -- 7.12.1 Biodiesel Production (Refer to Section 2) -- 7.12.2 Petrochemical Industries (Refer to Section 6.1) -- 7.12.3 Environmental Applications (Refer to Section 8) -- 7.12.4 Catalytic Cracking in Refining -- 7.12.5 Biomass Conversion -- 7.12.6 Water Treatment -- 7.12.7 Catalytic Decomposition of Ammonia -- 7.12.8 Aldol Condensation and Knoevenagel Reactions -- 7.12.9 Hydrogenation Reactions (Refer to Section 3) -- 7.13 Socioeconomic Impact of Using Solid Base Catalyst -- 7.14 Challenges and Future Prospects -- 7.14.1 Current Challenges in Solid Base Catalysis -- 7.14.2 Emerging Technologies and Materials -- 7.14.3 Prospects for Sustainable Industrial Catalysis -- 7.15 Conclusion -- 7.15.1 Summary of Key Points -- 7.15.2 Outlook for Continued Research and Development -- References -- Chapter 8 Silica‐Supported Heterogenous Catalysts: Application in the Synthesis of Tetrazoles -- 8.1 Introduction -- 8.1.1 General Synthetic Protocol for Tetrazoles -- 8.2 Silica‐Supported Heterogenous Catalysts for Tetrazole Synthesis -- 8.2.1 Generalized Reaction Mechanism of Silica‐Supported Heterogenous‐Catalyzed Tetrazole Synthesis -- 8.2.1.1 Via [3 + 2] Cycloaddition -- 8.2.1.2 Via One‐Pot Multicomponent Reaction of Amine, Triethyl Orthoformate, and Azide -- 8.3 Future Perspective of Silica‐Supported Catalysts in Tetrazole Synthesis -- 8.4 Conclusion -- Acknowledgment -- References -- Chapter 9 Theoretical Insights on Reduction of CO2 Using Functionalized Ionic Liquid at Gold Surface -- 9.1 Introduction to Heterogeneous Catalysts for CO2RR Applications -- 9.2 Computational Methodology -- 9.3 Characterization of Functionalized Ionic Liquids Interacting with CO2 -- 9.3.1 Studies of CO2 Interacting with ILs in Gas Phase.
9.3.2 Geometries and Energetics of CO2 Interacting with Solid-Liquid Interface.
Titolo autorizzato: Solid Base Catalysts  Visualizza cluster
ISBN: 3-527-84669-7
3-527-84670-0
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910898095603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui