10632nam 22004573 450 991089809560332120241011080436.03-527-84669-73-527-84670-0(MiAaPQ)EBC31717010(Au-PeEL)EBL31717010(CKB)36317798700041(EXLCZ)993631779870004120241011d2025 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierSolid Base Catalysts Synthesis, Characterization, and Applications1st ed.Newark :John Wiley & Sons, Incorporated,2025.©2025.1 online resource (377 pages)3-527-35376-3 Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction to Solid Base Catalyst -- 1.1 Introduction -- 1.2 History and Main Facts on Solid Base Catalysts -- 1.3 Literary Perspective of Solid Base Catalyst -- 1.4 Solid Basic Sites -- 1.5 Types of Solid Base Catalysts -- 1.5.1 Metal Oxides -- 1.5.1.1 Alkaline Earth Oxides -- 1.5.1.2 Zirconium Oxides -- 1.5.1.3 Rare Earth Oxides -- 1.5.1.4 Titanium Oxides -- 1.5.1.5 Zinc Oxide -- 1.5.1.6 Alumina -- 1.5.1.7 Mixed Oxides -- 1.5.1.8 Alkali Metal‐Loaded Metal Oxides -- 1.5.2 Zeolites -- 1.5.3 Mesoporous Materials -- 1.5.4 Clay Minerals (Hydrotalcite) -- 1.5.5 Oxynitride -- 1.5.6 Calcined Metal Phosphates -- 1.6 Why Solid Base Catalysts Have Fascinated the Scientific Community? -- 1.7 Advantages and Disadvantages of Solid Base Catalysts Over Inorganic/Organic Bases -- 1.8 Role of Solid Base Catalysts in Green Chemistry -- 1.9 Future Prospects for Solid Base Catalysts -- 1.10 Conclusion -- References -- Chapter 2 Synthesis of Solid Base Catalysts -- 2.1 Introduction -- 2.2 K2O/Al2O3-CaO -- 2.2.1 Preparation of K2O/Al2O3-CaO -- 2.2.1.1 Preparation of Al2O3-CaO Mixed Oxides Basic Support -- 2.2.1.2 Potassium Nitrate Loading with Calcined Mixed Oxides Basic Support -- 2.2.2 Catalytic Activity of K2O/Al2O3-CaO in the Knoevenagel Condensation Process for the Preparation of Benzylidene Barbituric and Benzylidenemalononitrile Derivatives -- 2.2.3 Catalytic Activity of K2O/Al2O3-CaO for the Preparation of Pyrano[2,3‐d]pyrimidinone Derivatives -- 2.3 Solid Base Fly Ash -- 2.3.1 Synthesis -- 2.3.2 Catalytic Activity of SBFA -- 2.3.3 Condensation Between Benzaldehyde and Cyclohexanone -- 2.3.4 Catalyst Regeneration -- 2.4 Calcined Water Sludge -- 2.4.1 Catalyst Preparation -- 2.5 Oxides of Rare Earth -- 2.5.1 Preparation -- 2.6 Titanium Dioxide -- 2.6.1 Preparation -- 2.7 Zinc Oxide.2.7.1 Preparation -- 2.8 Alkaline Earth Oxides -- 2.8.1 Preparation -- 2.8.1.1 Conventional Method for MgO Catalyst -- 2.8.1.2 Effects of Starting Magnesium Salt -- 2.8.1.3 Preparation of MgO by Sol-Gel Method -- 2.8.1.4 Preparation of Mesoporous MgO -- 2.8.1.5 Catalytic Activity for Claisen-Schmidt Reaction -- 2.9 Hydrotalcite -- 2.9.1 Synthesis of Hydrotalcite -- 2.9.1.1 Coprecipitation Method -- 2.9.1.2 Sol-Gel Method -- 2.9.1.3 Michael Addition -- 2.10 Comparison of Different Solid Base Catalysts -- 2.11 Conclusion -- Conflicts of Interest -- Acknowledgment -- References -- Chapter 3 Advanced Characterization Techniques for Solid Base Catalysts: An Overview -- 3.1 Introduction -- 3.2 Traditional Characterization Techniques for Solid Base Catalyst -- 3.2.1 Titration Method -- 3.2.2 IR Analysis -- 3.2.3 Scanning Electron Microscopes -- 3.3 Advanced Characterization Techniques for Solid Base Catalyst -- 3.3.1 Fourier Transform Infrared Spectroscopy (FT‐IR) -- 3.3.2 Field Emission Scanning Electron Microscopes (FE‐SEM) -- 3.3.3 Transmission Electron Microscope (TEM) -- 3.3.4 X‐ray Diffraction (XRD) Analysis -- 3.3.5 Thermogravimetric Analysis (TGA) -- 3.3.6 Brunauer-Emmett-Teller BET Surface Area Pore Diameter Analysis [Gas Interaction and Surface Area Measurement: (Brunauer-Emmett-Teller (BET), Barrett-Joyner-Halenda (BJH) N2 Adsorption-Desorption Isotherms)] -- 3.3.7 X‐Ray Photoelectron Spectroscopy (XPS) -- 3.3.8 X‐Ray Fluorescence (XRF) -- 3.4 Protocol for Characterization of Catalyst -- 3.4.1 Sample Preparation -- 3.4.1.1 XRD -- 3.4.1.2 FT‐IR -- 3.4.1.3 FE‐SEM -- 3.4.1.4 TEM -- 3.4.1.5 BET -- 3.4.1.6 TGA -- 3.5 Characterization of Some Basic Sites of Solid Base Catalyst with Suitable Example -- 3.6 Conclusion -- Acknowledgment -- References -- Chapter 4 Advanced Solid Catalysis for Biomass Conversion into High Value‐Added Chemicals.4.1 Introduction -- 4.2 Advanced Solid Catalysis -- 4.2.1 Types of Solid Catalysts -- 4.2.2 Methods for the Synthesis of Solid Catalysts -- 4.3 Biomass, Its Composition, and Properties -- 4.4 Biomass Conversion into High Value‐Added Chemicals -- 4.5 Utilization of Solid Catalysts for Biomass Conversion into High Value‐Added Chemicals -- 4.6 Electrocatalytic Conversion of Biomass into High Value‐Added Chemicals -- 4.7 Challenges in Design of Solid Catalysts for Biomass Conversion into High Value‐Added Chemicals -- 4.8 Advantages of High Value‐Added Chemicals -- 4.9 Summary and Future Prospectus -- Acknowledgments -- References -- Chapter 5 Applications of Solid Basic Catalysts for Organic Synthesis -- 5.1 Introduction -- 5.2 Solid‐Based Catalyst for Organic Synthesis -- 5.2.1 Metal Oxides -- 5.2.2 Zeolites -- 5.2.3 Clays -- 5.2.4 Solid‐Supported Basic Catalysts -- 5.3 Conclusion -- Consent for Publication -- Conflict of Interest -- Acknowledgment -- References -- Chapter 6 Multicomponent Reactions for Eco‐compatible Heterocyclic Synthesis Over Solid Base Catalysts -- 6.1 Introduction -- 6.2 Multicomponent Reactions (MCRs) -- 6.2.1 The Biginelli Multicomponent Reaction -- 6.2.2 The Hantzsch Multicomponent Reaction -- 6.2.3 The Mannich Multicomponent Reaction -- 6.2.4 The Passerini Multicomponent Reaction -- 6.2.5 The Ugi Multicomponent Reaction -- 6.2.6 The Gewald Multicomponent Reaction -- 6.3 Solid Base Catalysts for Organic Reactions -- 6.4 Characterization Techniques for Solid Base Catalysts -- 6.5 Heterocycle Synthesis Using Solid Base‐Catalyzed MCRs -- 6.6 Conclusion and Future Trends -- Acknowledgment -- References -- Chapter 7 Industrial Applications of Solid Base Catalysis -- 7.1 Introduction to Solid Base Catalysis -- 7.1.1 Definition and Characteristics of Solid Base Catalysts -- 7.1.2 Importance in Industrial Catalysis.7.1.3 Comparison with Solid Acid Catalysts -- 7.2 Biodiesel Production -- 7.2.1 Transesterification Reactions -- 7.2.2 Catalysts and Mechanisms -- 7.2.3 Industrial‐scale Biodiesel Production -- 7.3 Hydrogenation and Dehydrogenation Reactions -- 7.3.1 Role of Solid Base Catalysts -- 7.3.2 Case Studies: Hydrogenation of Oils and Dehydrogenation of Hydrocarbons -- 7.3.3 Catalytic Mechanisms -- 7.4 Bimolecular Reactions -- 7.4.1 Dialkyl Carbonate Synthesis -- 7.4.2 Catalyst Selection and Reaction Pathways -- 7.4.3 Applications and Industrial Scale‐Up -- 7.5 Methanol and DME Synthesis -- 7.5.1 Importance of Methanol and DME -- 7.5.2 Catalysts and Reaction Conditions -- 7.5.3 Technological Advancements -- 7.6 Transesterification of Esters -- 7.6.1 Role in Chemical and Petrochemical Industries -- 7.6.1.1 Producing Biodiesel -- 7.6.1.2 Specialized Chemical Production -- 7.6.1.3 Procedures for Polymerization -- 7.6.1.4 Engineering Reactions and Catalysis -- 7.6.1.5 Resource Efficiency and Waste Reduction -- 7.6.2 Catalysts for Transesterification -- 7.7 Alkylation and Isomerization Reactions -- 7.7.1 Solid Base Catalysis in Petrochemical Processes -- 7.7.2 Environmental and Economic Implications -- 7.7.2.1 Economic Implications -- 7.8 Environmental Applications -- 7.8.1 Sulfur Removal from Flue Gas -- 7.8.2 NOx Reduction in Catalytic Converters -- 7.8.3 Waste Remediation and Pollution Control -- 7.9 Dehydration Reactions -- 7.9.1 Dehydration of Alcohols to Olefins -- 7.9.2 Dehydration of Alkanes -- 7.9.3 Industrial Significance and Process Optimization -- 7.10 Sulfur Removal in Fuel Refining -- 7.10.1 Hydrodesulfurization (HDS) Catalysts -- 7.10.2 Sulfur Removal Mechanisms -- 7.10.3 Impact on Clean Fuel Production -- 7.11 Processing Methods -- 7.11.1 Impregnation Method -- 7.11.2 Precipitation and Coprecipitation Method -- 7.11.3 Sol-Gel Method.7.11.4 Hydrothermal Process -- 7.11.5 Vapor Phase Deposition Method -- 7.12 Use of Solid Base Catalyst in Various Industries -- 7.12.1 Biodiesel Production (Refer to Section 2) -- 7.12.2 Petrochemical Industries (Refer to Section 6.1) -- 7.12.3 Environmental Applications (Refer to Section 8) -- 7.12.4 Catalytic Cracking in Refining -- 7.12.5 Biomass Conversion -- 7.12.6 Water Treatment -- 7.12.7 Catalytic Decomposition of Ammonia -- 7.12.8 Aldol Condensation and Knoevenagel Reactions -- 7.12.9 Hydrogenation Reactions (Refer to Section 3) -- 7.13 Socioeconomic Impact of Using Solid Base Catalyst -- 7.14 Challenges and Future Prospects -- 7.14.1 Current Challenges in Solid Base Catalysis -- 7.14.2 Emerging Technologies and Materials -- 7.14.3 Prospects for Sustainable Industrial Catalysis -- 7.15 Conclusion -- 7.15.1 Summary of Key Points -- 7.15.2 Outlook for Continued Research and Development -- References -- Chapter 8 Silica‐Supported Heterogenous Catalysts: Application in the Synthesis of Tetrazoles -- 8.1 Introduction -- 8.1.1 General Synthetic Protocol for Tetrazoles -- 8.2 Silica‐Supported Heterogenous Catalysts for Tetrazole Synthesis -- 8.2.1 Generalized Reaction Mechanism of Silica‐Supported Heterogenous‐Catalyzed Tetrazole Synthesis -- 8.2.1.1 Via [3 + 2] Cycloaddition -- 8.2.1.2 Via One‐Pot Multicomponent Reaction of Amine, Triethyl Orthoformate, and Azide -- 8.3 Future Perspective of Silica‐Supported Catalysts in Tetrazole Synthesis -- 8.4 Conclusion -- Acknowledgment -- References -- Chapter 9 Theoretical Insights on Reduction of CO2 Using Functionalized Ionic Liquid at Gold Surface -- 9.1 Introduction to Heterogeneous Catalysts for CO2RR Applications -- 9.2 Computational Methodology -- 9.3 Characterization of Functionalized Ionic Liquids Interacting with CO2 -- 9.3.1 Studies of CO2 Interacting with ILs in Gas Phase.9.3.2 Geometries and Energetics of CO2 Interacting with Solid-Liquid Interface.Tomar Ravi1427077Pant K. K1766474Chandra Ramesh347964MiAaPQMiAaPQMiAaPQBOOK9910898095603321Solid Base Catalysts4210875UNINA02582nim 2200445Ka 450 991014876270332120250731100015.10-00-752599-0(CKB)3710000000923124(BIP)042885480(ODN)ODN0002535358(EXLCZ)99371000000092312420170203d2013 uy 0enguruna---|||||spwrdacontentsrdamediacrdamediacrrdacarrierEssential french in two hours /Paul NobleUnabridged.Glasgow Collins20131 online resource (2 audio files) digitalUnabridged.No grammar tests. No memory drills. No chance of failure. Welcome to Learn with Paul Noble – a unique, tried and tested language learning method that has been used by almost a million people to speak fluently and confidently in no time at all. Take a simple, relaxed approach to learning a language that has been proven to succeed every time. Unlike more traditional language learning courses, Paul Noble's unique method has no grammar tests, no memory drills and no chance of failure. Whatever your experience with languages, this is the course to get you speaking French quickly, easily, and effortlessly. Just listen, interact and learn wherever you are. In this audiobook, Paul will introduce you to the basics of the French language and guide you through 2 hours of practical, everyday scenarios that will build your confidence. A native-speaking French expert will help you to perfect your pronunciation as you progress through the course and allow you to quickly make your new knowledge work for you in a variety of practical situations. Language learning has finally become fun, enjoyable and accessible. A downloadable booklet is also included to use a reference and revision tool. The accompanying booklet is available here: http://collinsdictionary.com/resourcesNonfictionOverDriveEducationOverDriveForeign Language StudyOverDriveStudy Aids & WorkbooksOverDriveNonfiction.Education.Foreign Language Study.Study Aids & Workbooks.FOR008000JNF020000LAN026000TRV009050YAN020020bisacshNoble Paul1434896Noble Paul1434896AUDIO9910148762703321Essential french in two hours4412535UNINA