Vai al contenuto principale della pagina

Python Programming Using Problem Solving



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Bhasin Harsh Visualizza persona
Titolo: Python Programming Using Problem Solving Visualizza cluster
Pubblicazione: Bloomfield : , : Mercury Learning & Information, , 2023
©2023
Edizione: 1st ed.
Descrizione fisica: 1 online resource (601 pages)
Disciplina: 005.133
Soggetto topico: Python (Computer program language)
COMPUTERS / General
Soggetto non controllato: Matplotlib
NumPy
Pandas
algorithm
business communication
computer science
engineering
programming
science
Nota di contenuto: Cover -- Half-Title -- Title -- Copyright -- Dedication -- Content -- Preface -- Section I: Algorithmic Problem-Solving and Python Fundamentals -- Chapter 1: Algorithmic Problem-Solving -- 1.1 Introduction -- 1.2 Definition and Characteristics -- 1.3 Notations: Pseudocode and Flow Chart -- 1.4 Strategies for Problem-Solving: Recursion Versus Iteration -- 1.5 Asymptotic Notation -- 1.6 Complexity -- 1.7 Illustrations -- 1.7.1 Minimum in a List -- 1.7.2 Insert a Card in a Pack of Cards (Or Insert an element ina sorted list). There are ten cards in the pack, numbered from 1 to 10. -- 1.7.3 Guess a Number in a Given Range -- 1.7.4 Tower of Hanoi -- 1.8 Conclusion -- Glossary -- Points to Remember -- Exercises -- Multiple Choice Questions -- Theory -- Application -- Chapter 2: Introduction to Python -- 2.1 Introduction -- 2.2 Features of Python -- 2.2.1 Easy -- 2.2.2 Type and Run -- 2.2.3 Syntax -- 2.2.4 Mixing -- 2.2.5 Dynamic Typing -- 2.2.6 Built-in Object Types -- 2.2.7 Numerous Libraries and Tools -- 2.2.8 Portable -- 2.2.9 Free -- 2.3 The Paradigms -- 2.3.1 Procedural -- 2.3.2 Object-Oriented -- 2.3.3 Functional -- 2.4 Chronology and Uses -- 2.4.1 Chronology -- 2.4.2 Uses -- 2.5 Installation of Anaconda -- 2.6 Implementation of an Algorithm: Statement, State, Control Blocks, and Functions -- 2.6.1 Statement -- 2.6.2 State -- 2.6.3 Control Flow -- 2.7 Conclusion -- Glossary -- Points to Remember -- Resources -- Exercises -- Multiple Choice Questions -- Theory -- Chapter 3: Fundamentals -- 3.1 Introduction -- 3.2 Basic Input Output -- 3.2.1 Print Function -- 3.2.2 Input -- 3.3 Running a Program -- 3.3.1 Using the Command Prompt -- 3.3.2 Executing Programs Written in .py Files -- 3.3.3 Using Anaconda Navigator -- 3.4 The Jupyter Notebook -- 3.5 Value Type and Reference Type -- 3.6 Tokens, Keywords, and Identifiers -- 3.6.1 Python Keywords.
3.6.2 Python Identifiers -- 3.6.3 Python Escape Sequence -- 3.7 Statements -- 3.7.1 Expression Statement -- 3.7.2 Assignment Statements -- 3.7.3 The Assert Statements -- 3.7.4 The Pass Statements -- 3.7.5 The Control Statements -- 3.8 Comments -- 3.9 Operators -- 3.10 Types and Examples of Operators -- 3.10.1 Arithmetic Operators -- 3.10.2 String Operators -- 3.10.3 Comparison Operators -- 3.10.4 Assignment Operators -- 3.10.5 Logical Operators -- 3.10.6 Priority of Operators -- 3.11 Basic Data Types -- 3.11.1 Integer -- 3.11.2 Float -- 3.11.3 String -- 3.12 Conclusion -- Exercises -- Multiple Choice Questions -- Theory -- Explore -- Section II: Procedural Programming -- Chapter 4: Conditional Statements -- 4.1 Introduction -- 4.2 "If," If-Else, and If-Elif-Else Constructs -- 4.3 The If-Elif-Else Ladder -- 4.4 Logical Operators -- 4.5 The Ternary Operator -- 4.6 The Get Construct -- 4.7 Examples -- 4.8 Summary -- Glossary -- Points to Remember -- Exercises -- Multiple Choice Questions -- Programming Exercises -- Chapter 5: Looping -- 5.1 Introduction -- 5.2 While -- 5.3 Patterns -- 5.4 Nesting and Applications of Loops in Lists -- 5.5 Conclusion -- Glossary -- Points to Remember -- Exercises -- Multiple Choice Questions -- Programming Exercises -- Chapter 6: Functions -- 6.1 Introduction -- 6.2 Features of a Function -- 6.2.1 Modular Programming -- 6.2.2 Reusability of Code -- 6.2.3 Manageability -- 6.2.3.1 Easy debugging -- 6.2.3.2 Efficient -- 6.3 Basic Terminology -- 6.3.1 Name of a Function -- 6.3.2 Arguments -- 6.3.3 Return Value -- 6.4 Definition and Invocation -- 6.4.1 Working -- 6.5 Types of Function -- 6.5.1 Arguments: Types of Arguments -- 6.6 Implementing Search -- 6.7 Scope -- 6.8 Recursion -- 6.8.1 Rabbit Problem -- 6.8.2 Disadvantages of Using Recursion -- 6.9 Conclusion -- Glossary -- Points to Remember -- Exercises.
Multiple Choice Questions -- Programming Exercises -- Questions Based on Recursion -- Theory -- Extra Questions -- Chapter 7: File Handling -- 7.1 Introduction -- 7.2 The File Handling Mechanism -- 7.3 The Open Function and File Access Modes -- 7.4 Python Functions for File Handling -- 7.4.1 The Essential Ones -- 7.4.2 The OS Methods -- 7.4.3 Miscellaneous Functions and File Attributes -- 7.5 Command Line Arguments -- 7.6 Implementation and illustrations -- 7.7 Conclusion -- Points to Remember -- Exercises -- Multiple Choice Questions -- Theory -- Programming Exercises -- Chapter 8: Lists, tuple, and Dictionar -- 8.1 Introduction -- 8.2 Lists -- 8.2.1 Accessing Elements: Indexing and Slicing -- 8.2.2 Mutability -- 8.2.3 Operators -- 8.2.4 Traversal -- 8.2.5 Functions -- 8.3 Tuple -- 8.3.1 Accessing Elements of a Tuple -- 8.3.2 Nonmutability -- 8.3.3 Operators -- 8.3.4 Traversal -- 8.3.5 Functions -- 8.4 Associate Arrays and Dictionaries -- 8.4.1 Displaying Elements of a Dictionary -- 8.4.2 Some Important Functions of Dictionaries -- 8.4.2.1 The len function returns the number of elements in a given dictionary. -- 8.4.2.2 The max function returns the key with maximum value. If the key is a string, then the value in the lexicographic ordering would be returned. -- 8.4.2.3 The min function returns the key with minimum value. If the key is a string, then the value in the lexicographic ordering would be returned. -- 8.4.2.4 The sorted function would sort the elements of a given dictionary by their keys. If the keys are strings then lexicographic ordering would be followed. -- 8.4.2.5 The pop function takes out the element with the given key from the dictionary. -- 8.4.3 Input from the User -- 8.5 Conclusion -- Glossary -- Points to Remember -- Exercises -- Multiple Choice Questions -- Theory -- Programming Exercises.
Chapter 9: Iterations, Generators, and Comprehensions -- 9.1 Introduction -- 9.2 The Power of "For -- 9.3 Iterator -- 9.4 Defining an Iterable Object -- 9.5 Generators -- 9.6 Comprehensions -- 9.7 Conclusion -- Glossary -- Points to Remember -- Exercises -- Multiple Choice Questions -- Theory -- Programming Exercises -- Chapter 10: Strings -- 10.1 Introduction -- 10.2 Loops Revised -- 10.3 String Operators -- 10.3.1 The Concatenation Operator (+) -- 10.3.2 The Replication Operator (*) -- 10.3.3 The Membership Operator -- 10.4 In-Built Functions -- 10.4.1 len() -- 10.4.2 Capitalize() -- 10.4.3 Find() -- 10.4.4 Count -- 10.4.5 endswith() -- 10.4.6 encode -- 10.4.7 decode -- 10.4.8 Miscellaneous Functions -- 10.5 Conclusion -- Glossary -- Points to Remember -- Exercises -- Multiple Choice Questions -- Theory -- Section III: Object-Oriented Programming -- Chapter 11: Introduction to Object-Oriented Paradigm -- 11.1 Introduction -- 11.2 Creating New Types -- 11.3 Attributes and Functions -- 11.3.1 Attributes -- 11.3.2 Functions -- 11.4 Elements of Object-Oriented Programming -- 11.4.1 Class -- 11.4.2 Object -- 11.4.3 Encapsulation -- 11.4.4 Data Hiding -- 11.4.5 Inheritance -- 11.4.6 Polymorphism -- 11.4.7 Reusability -- 11.5 Conclusion -- Glossary -- Points to Remember -- Exercises -- Multiple Choice Questions -- Theory -- Explore and Design -- Chapter 12: Classes and Objects -- 12.1 Introduction to Classes -- 12.2 Defining a Class -- 12.3 Creating an Object -- 12.4 Scope of Data Members -- 12.5 Nesting -- 12.6 Constructor -- 12.7 Multiple __Init__(s) -- 12.8 Destructors -- 12.9 Conclusion -- Glossary -- Points to Remember -- Exercises -- Multiple Choice Questions -- Theory -- Programming Exercises -- Chapter 13: Inheritance -- 13.1 Introduction to Inheritance and Composition -- 13.1.1 Inheritance and Methods -- 13.1.2 Composition.
13.2 Inheritance: Importance and Types -- 13.2.1 Need for Inheritance -- 13.2.2 Types of Inheritance -- 13.2.2.1 Simple inheritance -- 13.2.2.2 Hierarchical inheritance -- 13.2.2.3 Multilevel inheritance -- 13.2.2.4 Multiple inheritance and hybrid inheritance -- 13.3 Methods -- 13.3.1 Bound Methods -- 13.3.2 Unbound Method -- 13.3.3 Methods are Callable Objects -- 13.3.4 The Importance and Usage of Super -- 13.3.5 Calling the Base Class Function Using Super -- 13.4 Search in Inheritance Tree -- 13.5 Class Interface and Abstract Classes -- 13.6 Conclusion -- Glossary -- Points to Remember -- Exercises -- Multiple Choice Questions -- Theory -- Programming Exercises -- Chapter 14: Operator Overloading -- 14.1 Introduction -- 14.2 __Init__ Revisited -- 14.2.1 Overloading __init__(Sort of) -- 14.3 Methods for Overloading Binary Operators -- 14.4 Overloading Binary Operators: The Fraction Example -- 14.5 Overloading the += Operator -- 14.6 Overloading the > -- and < -- Operators -- 14.7 Overloading the __Bool__ Operator: Precedence of __Bool__ Over __Len__ -- 14.8 Conclusion -- Glossary -- Points to Remember -- Exercises -- Multiple Choice Questions -- Theory -- Programming Exercises -- Chapter 15: Exception Handling -- 15.1 Introduction -- 15.2 Importance and Mechanism -- 15.2.1 An Example of Try/Except -- 15.2.2 Manually Raising Exceptions -- 15.3 Build-in Exceptions in Python -- 15.4 The Process -- 15.4.1 Example -- 15.4.2 Exception Handling: Try/Except -- 15.4.3 Raising Exceptions -- 15.5 Crafting User Defined Exceptions -- 15.6 An Example of Exception Handling -- 15.7 Conclusion -- Glossary -- Points to Remember -- Exercises -- Multiple Choice Questions -- Theory -- Programming Exercises -- Section IV: Numpy, Pandas, and Matplotlib -- Chapter 16: Numpy-I -- 16.1 Introduction -- 16.2 Fundamentals.
16.2.1 Similarity and Differences Between a List and a NumPy Array.
Sommario/riassunto: Python is a robust, procedural, object-oriented, and functional language. The features of the language make it valuable for web development, game development, business, and scientific programming. This book deals with problem-solving and programming in Python. It concentrates on the development of efficient algorithms, the syntax of the language, and the ability to design programs in order to solve problems. In addition to standard Python topics, the book has extensive coverage of NumPy, data visualization, and Matplotlib. Numerous types of exercises, including theoretical, programming, and multiple-choice, reinforce the concepts covered in each chapter. FEATURES:Concentrates on the development of efficient algorithms, the syntax of the language, and theability to design programs in order to solve problemsFeatures both standard Python topics and also extensive coverage of NumPy, data visualization, and Matplotlib problem-solving techniques
Titolo autorizzato: Python Programming Using Problem Solving  Visualizza cluster
ISBN: 1-68392-861-X
1-68392-860-1
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910915680903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui