1. Record Nr.

Autore
Titolo

Pubbl/distr/stampa

ISBN

Edizione
Descrizione fisica

Disciplina
Soggetti

Lingua di pubblicazione
Formato

Livello bibliografico

Nota di contenuto

UNINA9910915680903321
Bhasin Harsh
Python Programming Using Problem Solving

Bloomfield : , : Mercury Learning & Information, , 2023
©2023

1-68392-861-X
1-68392-860-1

[1st ed.]
1 online resource (601 pages)

005.133

Python (Computer program language)
COMPUTERS / General

Inglese
Materiale a stampa
Monografia

Cover -- Half-Title -- Title -- Copyright -- Dedication -- Content --
Preface -- Section I: Algorithmic Problem-Solving and Python
Fundamentals -- Chapter 1: Algorithmic Problem-Solving -- 1.1
Introduction -- 1.2 Definition and Characteristics -- 1.3 Notations:
Pseudocode and Flow Chart -- 1.4 Strategies for Problem-Solving:
Recursion Versus lteration -- 1.5 Asymptotic Notation -- 1.6
Complexity -- 1.7 lllustrations -- 1.7.1 Minimum in a List -- 1.7.2
Insert a Card in a Pack of Cards (Or Insert an element ina sorted list).
There are ten cards in the pack, numbered from 1 to 10. -- 1.7.3
Guess a Number in a Given Range -- 1.7.4 Tower of Hanoi -- 1.8
Conclusion -- Glossary -- Points to Remember -- Exercises -- Multiple
Choice Questions -- Theory -- Application -- Chapter 2: Introduction
to Python -- 2.1 Introduction -- 2.2 Features of Python -- 2.2.1 Easy
-- 2.2.2 Type and Run -- 2.2.3 Syntax -- 2.2.4 Mixing -- 2.2.5
Dynamic Typing -- 2.2.6 Built-in Object Types -- 2.2.7 Numerous
Libraries and Tools -- 2.2.8 Portable -- 2.2.9 Free -- 2.3 The
Paradigms -- 2.3.1 Procedural -- 2.3.2 Object-Oriented -- 2.3.3
Functional -- 2.4 Chronology and Uses -- 2.4.1 Chronology -- 2.4.2
Uses -- 2.5 Installation of Anaconda -- 2.6 Implementation of an
Algorithm: Statement, State, Control Blocks, and Functions -- 2.6.1
Statement -- 2.6.2 State -- 2.6.3 Control Flow -- 2.7 Conclusion --



Glossary -- Points to Remember -- Resources -- Exercises -- Multiple
Choice Questions -- Theory -- Chapter 3: Fundamentals -- 3.1
Introduction -- 3.2 Basic Input Output -- 3.2.1 Print Function -- 3.2.2
Input -- 3.3 Running a Program -- 3.3.1 Using the Command Prompt
-- 3.3.2 Executing Programs Written in .py Files -- 3.3.3 Using
Anaconda Navigator -- 3.4 The Jupyter Notebook -- 3.5 Value Type
and Reference Type -- 3.6 Tokens, Keywords, and Identifiers -- 3.6.1
Python Keywords.

3.6.2 Python Identifiers -- 3.6.3 Python Escape Sequence -- 3.7
Statements -- 3.7.1 Expression Statement -- 3.7.2 Assignment
Statements -- 3.7.3 The Assert Statements -- 3.7.4 The Pass
Statements -- 3.7.5 The Control Statements -- 3.8 Comments -- 3.9
Operators -- 3.10 Types and Examples of Operators -- 3.10.1
Arithmetic Operators -- 3.10.2 String Operators -- 3.10.3 Comparison
Operators -- 3.10.4 Assignment Operators -- 3.10.5 Logical Operators
-- 3.10.6 Priority of Operators -- 3.11 Basic Data Types -- 3.11.1
Integer -- 3.11.2 Float -- 3.11.3 String -- 3.12 Conclusion --

Exercises -- Multiple Choice Questions -- Theory -- Explore -- Section
[I: Procedural Programming -- Chapter 4: Conditional Statements --
4.1 Introduction -- 4.2 "If," If-Else, and If-Elif-Else Constructs -- 4.3
The If-Elif-Else Ladder -- 4.4 Logical Operators -- 4.5 The Ternary
Operator -- 4.6 The Get Construct -- 4.7 Examples -- 4.8 Summary --
Glossary -- Points to Remember -- Exercises -- Multiple Choice
Questions -- Programming Exercises -- Chapter 5: Looping -- 5.1
Introduction -- 5.2 While -- 5.3 Patterns -- 5.4 Nesting and
Applications of Loops in Lists -- 5.5 Conclusion -- Glossary -- Points
to Remember -- Exercises -- Multiple Choice Questions --
Programming Exercises -- Chapter 6: Functions -- 6.1 Introduction --
6.2 Features of a Function -- 6.2.1 Modular Programming -- 6.2.2
Reusability of Code -- 6.2.3 Manageability -- 6.2.3.1 Easy debugging
-- 6.2.3.2 Efficient -- 6.3 Basic Terminology -- 6.3.1 Name of a
Function -- 6.3.2 Arguments -- 6.3.3 Return Value -- 6.4 Definition
and Invocation -- 6.4.1 Working -- 6.5 Types of Function -- 6.5.1
Arguments: Types of Arguments -- 6.6 Implementing Search -- 6.7
Scope -- 6.8 Recursion -- 6.8.1 Rabbit Problem -- 6.8.2
Disadvantages of Using Recursion -- 6.9 Conclusion -- Glossary --
Points to Remember -- Exercises.

Multiple Choice Questions -- Programming Exercises -- Questions
Based on Recursion -- Theory -- Extra Questions -- Chapter 7: File
Handling -- 7.1 Introduction -- 7.2 The File Handling Mechanism --
7.3 The Open Function and File Access Modes -- 7.4 Python Functions
for File Handling -- 7.4.1 The Essential Ones -- 7.4.2 The OS Methods
-- 7.4.3 Miscellaneous Functions and File Attributes -- 7.5 Command
Line Arguments -- 7.6 Implementation and illustrations -- 7.7
Conclusion -- Points to Remember -- Exercises -- Multiple Choice
Questions -- Theory -- Programming Exercises -- Chapter 8: Lists,
tuple, and Dictionar -- 8.1 Introduction -- 8.2 Lists -- 8.2.1 Accessing
Elements: Indexing and Slicing -- 8.2.2 Mutability -- 8.2.3 Operators
-- 8.2.4 Traversal -- 8.2.5 Functions -- 8.3 Tuple -- 8.3.1 Accessing
Elements of a Tuple -- 8.3.2 Nonmutability -- 8.3.3 Operators -- 8.3.4
Traversal -- 8.3.5 Functions -- 8.4 Associate Arrays and Dictionaries
-- 8.4.1 Displaying Elements of a Dictionary -- 8.4.2 Some Important
Functions of Dictionaries -- 8.4.2.1 The len function returns the
number of elements in a given dictionary. -- 8.4.2.2 The max function
returns the key with maximum value. If the key is a string, then the
value in the lexicographic ordering would be returned. -- 8.4.2.3 The
min function returns the key with minimum value. If the key is a string,
then the value in the lexicographic ordering would be returned. --



8.4.2.4 The sorted function would sort the elements of a given
dictionary by their keys. If the keys are strings then lexicographic
ordering would be followed. -- 8.4.2.5 The pop function takes out the
element with the given key from the dictionary. -- 8.4.3 Input from the
User -- 8.5 Conclusion -- Glossary -- Points to Remember --
Exercises -- Multiple Choice Questions -- Theory -- Programming
Exercises.

Chapter 9: Iterations, Generators, and Comprehensions -- 9.1
Introduction -- 9.2 The Power of "For -- 9.3 Iterator -- 9.4 Defining an
Iterable Object -- 9.5 Generators -- 9.6 Comprehensions -- 9.7
Conclusion -- Glossary -- Points to Remember -- Exercises -- Multiple
Choice Questions -- Theory -- Programming Exercises -- Chapter 10:
Strings -- 10.1 Introduction -- 10.2 Loops Revised -- 10.3 String
Operators -- 10.3.1 The Concatenation Operator (+) -- 10.3.2 The
Replication Operator (*) -- 10.3.3 The Membership Operator -- 10.4
In-Built Functions -- 10.4.1 len() -- 10.4.2 Capitalize() -- 10.4.3 Find()
--10.4.4 Count -- 10.4.5 endswith() -- 10.4.6 encode -- 10.4.7
decode -- 10.4.8 Miscellaneous Functions -- 10.5 Conclusion --
Glossary -- Points to Remember -- Exercises -- Multiple Choice
Questions -- Theory -- Section Ill: Object-Oriented Programming --
Chapter 11: Introduction to Object-Oriented Paradigm -- 11.1
Introduction -- 11.2 Creating New Types -- 11.3 Attributes and
Functions -- 11.3.1 Attributes -- 11.3.2 Functions -- 11.4 Elements of
Object-Oriented Programming -- 11.4.1 Class -- 11.4.2 Object --
11.4.3 Encapsulation -- 11.4.4 Data Hiding -- 11.4.5 Inheritance --
11.4.6 Polymorphism -- 11.4.7 Reusability -- 11.5 Conclusion --
Glossary -- Paoints to Remember -- Exercises -- Multiple Choice
Questions -- Theory -- Explore and Design -- Chapter 12: Classes and
Objects -- 12.1 Introduction to Classes -- 12.2 Defining a Class --
12.3 Creating an Object -- 12.4 Scope of Data Members -- 12.5
Nesting -- 12.6 Constructor -- 12.7 Multiple __Init__(s) -- 12.8
Destructors -- 12.9 Conclusion -- Glossary -- Points to Remember --
Exercises -- Multiple Choice Questions -- Theory -- Programming
Exercises -- Chapter 13: Inheritance -- 13.1 Introduction to
Inheritance and Composition -- 13.1.1 Inheritance and Methods --
13.1.2 Composition.

13.2 Inheritance: Importance and Types -- 13.2.1 Need for Inheritance
-- 13.2.2 Types of Inheritance -- 13.2.2.1 Simple inheritance --
13.2.2.2 Hierarchical inheritance -- 13.2.2.3 Multilevel inheritance --
13.2.2.4 Multiple inheritance and hybrid inheritance -- 13.3 Methods
-- 13.3.1 Bound Methods -- 13.3.2 Unbound Method -- 13.3.3
Methods are Callable Objects -- 13.3.4 The Importance and Usage of
Super -- 13.3.5 Calling the Base Class Function Using Super -- 13.4
Search in Inheritance Tree -- 13.5 Class Interface and Abstract Classes
-- 13.6 Conclusion -- Glossary -- Points to Remember -- Exercises --
Multiple Choice Questions -- Theory -- Programming Exercises --
Chapter 14: Operator Overloading -- 14.1 Introduction -- 14.2 __ Init__
Revisited -- 14.2.1 Overloading __init__(Sort of) -- 14.3 Methods for
Overloading Binary Operators -- 14.4 Overloading Binary Operators:
The Fraction Example -- 14.5 Overloading the += Operator -- 14.6
Overloading the &gt -- and &lt -- Operators -- 14.7 Overloading the
__Bool__ Operator: Precedence of __Bool _Over Len_ --14.8
Conclusion -- Glossary -- Points to Remember -- Exercises -- Multiple
Choice Questions -- Theory -- Programming Exercises -- Chapter 15:
Exception Handling -- 15.1 Introduction -- 15.2 Importance and
Mechanism -- 15.2.1 An Example of Try/Except -- 15.2.2 Manually
Raising Exceptions -- 15.3 Build-in Exceptions in Python -- 15.4 The
Process -- 15.4.1 Example -- 15.4.2 Exception Handling: Try/Except



-- 15.4.3 Raising Exceptions -- 15.5 Crafting User Defined Exceptions
-- 15.6 An Example of Exception Handling -- 15.7 Conclusion --
Glossary -- Points to Remember -- Exercises -- Multiple Choice
Questions -- Theory -- Programming Exercises -- Section IV: Numpy,
Pandas, and Matplotlib -- Chapter 16: Numpy-I -- 16.1 Introduction --
16.2 Fundamentals.

16.2.1 Similarity and Differences Between a List and a NumPy Array.

Sommario/riassunto Python is a robust, procedural, object-oriented, and functional
language. The features of the language make it valuable for web
development, game development, business, and scientific
programming. This book deals with problem-solving and programming
in Python. It concentrates on the development of efficient algorithms,
the syntax of the language, and the ability to design programs in order
to solve problems. In addition to standard Python topics, the book has
extensive coverage of NumPy, data visualization, and Matplotlib.
Numerous types of exercises, including theoretical, programming, and
multiple-choice, reinforce the concepts covered in each chapter.
FEATURES:Concentrates on the development of efficient algorithms, the
syntax of the language, and theability to design programs in order to
solve problemsFeatures both standard Python topics and also extensive
coverage of NumPy, data visualization, and Matplotlib problem-solving
techniques



