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Sommario/riassunto Python is a robust, procedural, object-oriented, and functional
language. The features of the language make it valuable for web
development, game development, business, and scientific
programming. This book deals with problem-solving and programming
in Python. It concentrates on the development of efficient algorithms,
the syntax of the language, and the ability to design programs in order
to solve problems. In addition to standard Python topics, the book has
extensive coverage of NumPy, data visualization, and Matplotlib.
Numerous types of exercises, including theoretical, programming, and
multiple-choice, reinforce the concepts covered in each chapter.
FEATURES:Concentrates on the development of efficient algorithms, the
syntax of the language, and theability to design programs in order to
solve problemsFeatures both standard Python topics and also extensive
coverage of NumPy, data visualization, and Matplotlib problem-solving
techniques



