Vai al contenuto principale della pagina
| Autore: |
Goos Peter
|
| Titolo: |
Optimal design of experiments : a case study approach / / Peter Goos, Bradley Jones
|
| Pubblicazione: | Hoboken, N.J., : Wiley, 2011 |
| Edizione: | 1st ed. |
| Descrizione fisica: | 1 online resource (305 p.) |
| Disciplina: | 670.285 |
| Soggetto topico: | Industrial engineering - Experiments - Computer-aided design |
| Experimental design - Data processing | |
| Industrial engineering | |
| Altri autori: |
JonesBradley
|
| Note generali: | Description based upon print version of record. |
| Nota di bibliografia: | Includes bibliographical references and index. |
| Nota di contenuto: | Optimal Design of Experiments : A Case Study Approach; Contents; Preface; Acknowledgments; 1 A simple comparative experiment; 1.1 Key concepts; 1.2 The setup of a comparative experiment; 1.3 Summary; 2 An optimal screening experiment; 2.1 Key concepts; 2.2 Case: an extraction experiment; 2.2.1 Problem and design; 2.2.2 Data analysis; 2.3 Peek into the black box; 2.3.1 Main-effects models; 2.3.2 Models with two-factor interaction effects; 2.3.3 Factor scaling; 2.3.4 Ordinary least squares estimation; 2.3.5 Significance tests and statistical power calculations; 2.3.6 Variance inflation |
| 2.3.7 Aliasing2.3.8 Optimal design; 2.3.9 Generating optimal experimental designs; 2.3.10 The extraction experiment revisited; 2.3.11 Principles of successful screening: sparsity, hierarchy, and heredity; 2.4 Background reading; 2.4.1 Screening; 2.4.2 Algorithms for finding optimal designs; 2.5 Summary; 3 Adding runs to a screening experiment; 3.1 Key concepts; 3.2 Case: an augmented extraction experiment; 3.2.1 Problem and design; 3.2.2 Data analysis; 3.3 Peek into the black box; 3.3.1 Optimal selection of a follow-up design; 3.3.2 Design construction algorithm; 3.3.3 Foldover designs | |
| 3.4 Background reading3.5 Summary; 4 A response surface design with a categorical factor; 4.1 Key concepts; 4.2 Case: a robust and optimal process experiment; 4.2.1 Problem and design; 4.2.2 Data analysis; 4.3 Peek into the black box; 4.3.1 Quadratic effects; 4.3.2 Dummy variables for multilevel categorical factors; 4.3.3 Computing D-efficiencies; 4.3.4 Constructing Fraction of Design Space plots; 4.3.5 Calculating the average relative variance of prediction; 4.3.6 Computing I-efficiencies; 4.3.7 Ensuring the validity of inference based on ordinary least squares; 4.3.8 Design regions | |
| 4.4 Background reading4.5 Summary; 5 A response surface design in an irregularly shaped design region; 5.1 Key concepts; 5.2 Case: the yield maximization experiment; 5.2.1 Problem and design; 5.2.2 Data analysis; 5.3 Peek into the black box; 5.3.1 Cubic factor effects; 5.3.2 Lack-of-fit test; 5.3.3 Incorporating factor constraints in the design construction algorithm; 5.4 Background reading; 5.5 Summary; 6 A "mixture" experiment with process variables; 6.1 Key concepts; 6.2 Case: the rolling mill experiment; 6.2.1 Problem and design; 6.2.2 Data analysis; 6.3 Peek into the black box | |
| 6.3.1 The mixture constraint6.3.2 The effect of the mixture constraint on the model; 6.3.3 Commonly used models for data from mixture experiments; 6.3.4 Optimal designs for mixture experiments; 6.3.5 Design construction algorithms for mixture experiments; 6.4 Background reading; 6.5 Summary; 7 A response surface design in blocks; 7.1 Key concepts; 7.2 Case: the pastry dough experiment; 7.2.1 Problem and design; 7.2.2 Data analysis; 7.3 Peek into the black box; 7.3.1 Model; 7.3.2 Generalized least squares estimation; 7.3.3 Estimation of variance components; 7.3.4 Significance tests | |
| 7.3.5 Optimal design of blocked experiments | |
| Sommario/riassunto: | "This book demonstrates the utility of the computer-aided optimal design approach using real industrial examples. These examples address questions such as the following: How can I do screening inexpensively if I have dozens of factors to investigate? What can I do if I have day-to-day variability and I can only perform 3 runs a day? How can I do RSM cost effectively if I have categorical factors? How can I design and analyze experiments when there is a factor that can only be changed a few times over the study? How can I include both ingredients in a mixture and processing factors in the same study? How can I design an experiment if there are many factor combinations that are impossible to run? How can I make sure that a time trend due to warming up of equipment does not affect the conclusions from a study? How can I take into account batch information in when designing experiments involving multiple batches? How can I add runs to a botched experiment to resolve ambiguities?While answering these questions the book also shows how to evaluate and compare designs. This allows researchers to make sensible trade-offs between the cost of experimentation and the amount of information they obtain. The structure of the book is organized around the following chapters: 1) Introduction explaining the concept of tailored DOE. 2) Basics of optimal design. 3) Nine case studies dealing with the above questions using the flow: description → design → analysis → optimization or engineering interpretation. 4) Summary. 5) Technical appendices for the mathematically curious"-- |
| "This book demonstrates the utility of the computer-aided optimal design approach using real industrial examples"-- | |
| Titolo autorizzato: | Optimal Design of Experiments ![]() |
| ISBN: | 9781119976165 |
| 1119976162 | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910955546603321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |