LEADER 06470nam 2200601 a 450 001 9910955546603321 005 20200520144314.0 010 $a9781119976165 010 $a1119976162 035 $a(CKB)3710000000754843 035 $a(EBL)697607 035 $a(OCoLC)747411905 035 $a(MiAaPQ)EBC697607 035 $a(Perlego)1012859 035 $a(EXLCZ)993710000000754843 100 $a20110404d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aOptimal design of experiments $ea case study approach /$fPeter Goos, Bradley Jones 205 $a1st ed. 210 $aHoboken, N.J. $cWiley$d2011 215 $a1 online resource (305 p.) 300 $aDescription based upon print version of record. 311 08$a9781119976172 311 08$a1119976170 320 $aIncludes bibliographical references and index. 327 $aOptimal Design of Experiments : A Case Study Approach; Contents; Preface; Acknowledgments; 1 A simple comparative experiment; 1.1 Key concepts; 1.2 The setup of a comparative experiment; 1.3 Summary; 2 An optimal screening experiment; 2.1 Key concepts; 2.2 Case: an extraction experiment; 2.2.1 Problem and design; 2.2.2 Data analysis; 2.3 Peek into the black box; 2.3.1 Main-effects models; 2.3.2 Models with two-factor interaction effects; 2.3.3 Factor scaling; 2.3.4 Ordinary least squares estimation; 2.3.5 Significance tests and statistical power calculations; 2.3.6 Variance inflation 327 $a2.3.7 Aliasing2.3.8 Optimal design; 2.3.9 Generating optimal experimental designs; 2.3.10 The extraction experiment revisited; 2.3.11 Principles of successful screening: sparsity, hierarchy, and heredity; 2.4 Background reading; 2.4.1 Screening; 2.4.2 Algorithms for finding optimal designs; 2.5 Summary; 3 Adding runs to a screening experiment; 3.1 Key concepts; 3.2 Case: an augmented extraction experiment; 3.2.1 Problem and design; 3.2.2 Data analysis; 3.3 Peek into the black box; 3.3.1 Optimal selection of a follow-up design; 3.3.2 Design construction algorithm; 3.3.3 Foldover designs 327 $a3.4 Background reading3.5 Summary; 4 A response surface design with a categorical factor; 4.1 Key concepts; 4.2 Case: a robust and optimal process experiment; 4.2.1 Problem and design; 4.2.2 Data analysis; 4.3 Peek into the black box; 4.3.1 Quadratic effects; 4.3.2 Dummy variables for multilevel categorical factors; 4.3.3 Computing D-efficiencies; 4.3.4 Constructing Fraction of Design Space plots; 4.3.5 Calculating the average relative variance of prediction; 4.3.6 Computing I-efficiencies; 4.3.7 Ensuring the validity of inference based on ordinary least squares; 4.3.8 Design regions 327 $a4.4 Background reading4.5 Summary; 5 A response surface design in an irregularly shaped design region; 5.1 Key concepts; 5.2 Case: the yield maximization experiment; 5.2.1 Problem and design; 5.2.2 Data analysis; 5.3 Peek into the black box; 5.3.1 Cubic factor effects; 5.3.2 Lack-of-fit test; 5.3.3 Incorporating factor constraints in the design construction algorithm; 5.4 Background reading; 5.5 Summary; 6 A "mixture" experiment with process variables; 6.1 Key concepts; 6.2 Case: the rolling mill experiment; 6.2.1 Problem and design; 6.2.2 Data analysis; 6.3 Peek into the black box 327 $a6.3.1 The mixture constraint6.3.2 The effect of the mixture constraint on the model; 6.3.3 Commonly used models for data from mixture experiments; 6.3.4 Optimal designs for mixture experiments; 6.3.5 Design construction algorithms for mixture experiments; 6.4 Background reading; 6.5 Summary; 7 A response surface design in blocks; 7.1 Key concepts; 7.2 Case: the pastry dough experiment; 7.2.1 Problem and design; 7.2.2 Data analysis; 7.3 Peek into the black box; 7.3.1 Model; 7.3.2 Generalized least squares estimation; 7.3.3 Estimation of variance components; 7.3.4 Significance tests 327 $a7.3.5 Optimal design of blocked experiments 330 $a"This book demonstrates the utility of the computer-aided optimal design approach using real industrial examples. These examples address questions such as the following: How can I do screening inexpensively if I have dozens of factors to investigate? What can I do if I have day-to-day variability and I can only perform 3 runs a day? How can I do RSM cost effectively if I have categorical factors? How can I design and analyze experiments when there is a factor that can only be changed a few times over the study? How can I include both ingredients in a mixture and processing factors in the same study? How can I design an experiment if there are many factor combinations that are impossible to run? How can I make sure that a time trend due to warming up of equipment does not affect the conclusions from a study? How can I take into account batch information in when designing experiments involving multiple batches? How can I add runs to a botched experiment to resolve ambiguities?While answering these questions the book also shows how to evaluate and compare designs. This allows researchers to make sensible trade-offs between the cost of experimentation and the amount of information they obtain. The structure of the book is organized around the following chapters: 1) Introduction explaining the concept of tailored DOE. 2) Basics of optimal design. 3) Nine case studies dealing with the above questions using the flow: description → design → analysis → optimization or engineering interpretation. 4) Summary. 5) Technical appendices for the mathematically curious"--$cProvided by publisher. 330 $a"This book demonstrates the utility of the computer-aided optimal design approach using real industrial examples"--$cProvided by publisher. 606 $aIndustrial engineering$xExperiments$xComputer-aided design 606 $aExperimental design$xData processing 606 $aIndustrial engineering$vCase studies 615 0$aIndustrial engineering$xExperiments$xComputer-aided design. 615 0$aExperimental design$xData processing. 615 0$aIndustrial engineering 676 $a670.285 700 $aGoos$b Peter$01598894 701 $aJones$b Bradley$042705 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910955546603321 996 $aOptimal Design of Experiments$94045089 997 $aUNINA