Vai al contenuto principale della pagina

Microlocal Analysis, Sharp Spectral Asymptotics and Applications III : Magnetic Schrödinger Operator 1 / / by Victor Ivrii



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Ivrii Victor Visualizza persona
Titolo: Microlocal Analysis, Sharp Spectral Asymptotics and Applications III : Magnetic Schrödinger Operator 1 / / by Victor Ivrii Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Edizione: 1st ed. 2019.
Descrizione fisica: 1 online resource (XXI, 729 p. 1 illus.)
Disciplina: 515
Soggetto topico: Mathematical analysis
Analysis (Mathematics)
Mathematical physics
Analysis
Mathematical Physics
Nota di contenuto: Smooth theory in dimensions 2 and 3 -- Standard Theory -- 2D degenerating magnetic Schrödinger operator -- 2D magnetic Schrödinger near boundary -- Magnetic Schrödinger operator: short loops -- Dirac operator with strong magnetic field.
Sommario/riassunto: The prime goal of this monograph, which comprises a total of five volumes, is to derive sharp spectral asymptotics for broad classes of partial differential operators using techniques from semiclassical microlocal analysis, in particular, propagation of singularities, and to subsequently use the variational estimates in “small” domains to consider domains with singularities of different kinds. In turn, the general theory (results and methods developed) is applied to the Magnetic Schrödinger operator, miscellaneous problems, and multiparticle quantum theory. In this volume the methods developed in Volumes I and II are applied to the Schrödinger and Dirac operators in smooth settings in dimensions 2 and 3.
Titolo autorizzato: Microlocal Analysis, Sharp Spectral Asymptotics and Applications III  Visualizza cluster
ISBN: 3-030-30537-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910349320503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui