LEADER 01660nam a2200373 i 4500 001 991001365989707536 005 20020507192145.0 008 980625s1980 us ||| | eng 020 $a0821830309 (v. 1) 020 $a0821830724 (v. 2) 035 $ab10837498-39ule_inst 035 $aLE01311164$9ExL 040 $aDip.to Matematica$beng 041 0 $aengrus 084 $aAMS 00B25 100 1 $aNikol'skii, Nikolai Konstantinovich$0536748 245 10$aSpectral theory of functions and operators /$cedited by N. K. Nikol'skii 260 $aProvidence, R.I. :$bAmerican Mathematical Society,$c1980- 300 $av. :$bill. ;$c25 cm. 490 0 $aProceedings of the Steklov Institute of Mathematics, ISSN 00815438 ;$v130, n.4 (1979) 490 0 $aProceedings of the Steklov Institute of Mathematics, ISSN 00815438 ;$v155, n.1 (1983) 500 $aTranslation of: Spektral'naia teoriia funktsii i operatorov. 500 $aNumbers in Russian series statements: tom 130 (1978), tom 155 (1981). 500 $aIncludes bibliographical references 650 4$aAnalytic functions 650 4$aLinear operators 650 4$aSpectral theory (Mathematics) 907 $a.b10837498$b23-02-17$c28-06-02 912 $a991001365989707536 945 $aLE013 00B STE11 V.130 (1979)$cV. 1$g1$i2013000100456$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10947206$z28-06-02 945 $aLE013 00B STE11 V.155 (1983)$cV. 2$g1$i2013000100838$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10947218$z28-06-02 996 $aSpectral theory of functions and operators$9924029 997 $aUNISALENTO 998 $ale013$b01-01-98$cm$da $e-$feng$gus $h0$i2 LEADER 02727nam 22005175 450 001 9910349320503321 005 20200706173910.0 010 $a3-030-30537-6 024 7 $a10.1007/978-3-030-30537-6 035 $a(CKB)4100000009273654 035 $a(DE-He213)978-3-030-30537-6 035 $a(MiAaPQ)EBC5896880 035 $a(PPN)269145605 035 $a(EXLCZ)994100000009273654 100 $a20190912d2019 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMicrolocal Analysis, Sharp Spectral Asymptotics and Applications III $eMagnetic Schrödinger Operator 1 /$fby Victor Ivrii 205 $a1st ed. 2019. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2019. 215 $a1 online resource (XXI, 729 p. 1 illus.) 311 $a3-030-30536-8 327 $aSmooth theory in dimensions 2 and 3 -- Standard Theory -- 2D degenerating magnetic Schrödinger operator -- 2D magnetic Schrödinger near boundary -- Magnetic Schrödinger operator: short loops -- Dirac operator with strong magnetic field. 330 $aThe prime goal of this monograph, which comprises a total of five volumes, is to derive sharp spectral asymptotics for broad classes of partial differential operators using techniques from semiclassical microlocal analysis, in particular, propagation of singularities, and to subsequently use the variational estimates in ?small? domains to consider domains with singularities of different kinds. In turn, the general theory (results and methods developed) is applied to the Magnetic Schrödinger operator, miscellaneous problems, and multiparticle quantum theory. In this volume the methods developed in Volumes I and II are applied to the Schrödinger and Dirac operators in smooth settings in dimensions 2 and 3. 606 $aMathematical analysis 606 $aAnalysis (Mathematics) 606 $aMathematical physics 606 $aAnalysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12007 606 $aMathematical Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/M35000 615 0$aMathematical analysis. 615 0$aAnalysis (Mathematics). 615 0$aMathematical physics. 615 14$aAnalysis. 615 24$aMathematical Physics. 676 $a515 700 $aIvrii$b Victor$4aut$4http://id.loc.gov/vocabulary/relators/aut$0478877 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910349320503321 996 $aMicrolocal Analysis, Sharp Spectral Asymptotics and Applications III$92546593 997 $aUNINA