Vai al contenuto principale della pagina
| Autore: |
Kumar Ajay
|
| Titolo: |
Microbes Based Approaches for the Management of Hazardous Contaminants
|
| Pubblicazione: | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| ©2024 | |
| Edizione: | 1st ed. |
| Descrizione fisica: | 1 online resource (461 pages) |
| Soggetto topico: | Microbial ecology |
| Soil remediation | |
| Altri autori: |
ShuklaLivleen
SinghJoginder
Romanholo FerreiraLuiz Fernando
|
| Nota di contenuto: | Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 Mycobial Nanotechnology in Bioremediation of Wastewater -- 1.1 Fungi -- 1.2 Nanotechnology Aspects -- 1.3 The Production of Nanoparticles Using an Origin of Fungi -- 1.3.1 Silver Nanoparticles -- 1.3.2 Gold Nanoparticles -- 1.3.3 Additional Nanoparticles -- 1.4 Categories and Characteristics of Synthesized Nanoparticles -- 1.4.1 Characteristics on Nanoparticles -- 1.4.2 Physical Characteristics -- 1.4.3 Biological Characteristics -- 1.4.4 Medical Benefits -- 1.4.5 Mechanical Characteristics -- 1.4.6 Optical Characteristics -- 1.4.7 Electrical Characteristics -- 1.5 Various Usage of Nanomaterials -- 1.6 Mycobial Bioremediation of Heavy Metals from Wastewater -- 1.7 Benefits of Mycobial Bioremediation -- 1.8 Constraints of Mycobial Bioremediation -- 1.9 Conclusion and Future Prospects -- References -- Chapter 2 Microbial Enzymes in Biodegradation of Organic Pollutants: Mechanisms and Applications -- 2.1 Introduction -- 2.1.1 Mechanism of Microbial Enzymes in Bioremediation of Organic Pollutants -- 2.1.1.1 Fungi -- 2.1.1.2 Bacteria -- 2.1.1.3 Algae -- 2.1.1.4 Other Microbes -- 2.1.2 Applications of Microbial Enzymes Mediated Bioremediation -- 2.1.3 Factors Affecting Enzymatic Biodegradation -- 2.2 Conclusion -- References -- Chapter 3 Microbe Assisted Remediation of Xenobiotics: A Sustainable Solution -- 3.1 Introduction -- 3.1.1 Sources of Xenobiotics -- 3.1.2 The Effects of Xenobiotics on Environment -- 3.1.2.1 Effect of Xenobiotics on Soil -- 3.1.2.2 Effect of Xenobiotics on Water -- 3.1.2.3 Effect of Xenobiotics on Plants -- 3.1.2.4 Effect of Xenobiotics on Marine Life -- 3.1.2.5 Effect of Xenobiotics on Terrestrial Animals -- 3.1.2.6 Effect of Xenobiotics on Human Health -- 3.2 Bioremediation -- 3.2.1 Factors Affecting Bioremediation. |
| 3.3 Environmental Factors -- 3.3.1 Strategies for Bioremediation -- 3.3.1.1 In Situ Bioremediation Strategies -- 3.3.2 Bioventing -- 3.3.3 Biosparging -- 3.3.4 Bioaugmentation -- 3.3.5 Biostimulation -- 3.4 Ex Situ Bioremediation Strategies -- 3.4.1 Landfarming -- 3.4.2 Composting -- 3.4.3 Biopiling -- 3.5 Genetic Engineering Approaches -- 3.6 The Beneficial Role of Microbes in Degradation of Different Pollutants -- 3.6.1 In Heavy Metal Bioremediation -- 3.7 Mechanism of Heavy Metal Detoxification by Microbes -- 3.7.1 Biosorption Mechanisms -- 3.8 Intracellular Sequestration -- 3.9 Extracellular Sequestration -- 3.9.1 Metal Methylation -- 3.10 Reduction of Heavy Metal Ions by Microbial Cell -- 3.10.1 In Dye Bioremediation -- 3.11 The Degradation Mechanism of the Complex Dye Structure by Microbes -- 3.11.1 In Pesticide Bioremediation -- 3.11.2 In Petroleum Hydrocarbons and Chlorinated Compound Bioremediation -- 3.12 In Domestic and Agricultural Lignocellulose Wastes Remediation -- 3.13 Conclusion -- References -- Chapter 4 Bioremediation Strategies as Sustainable Bio-Tools for Mitigationof Emerging Pollutants -- 4.1 Introduction -- 4.2 Bioremediation by Microbial Strains -- 4.2.1 Aerobic -- 4.2.2 Anaerobic -- 4.3 Factors Affecting Microbial Bioremediation -- 4.3.1 Principle of Bioremediation -- 4.4 Classification of Bioremediations -- 4.4.1 Land Farming -- 4.4.2 Biopile -- 4.4.3 Bioreactor -- 4.4.3.1 In Situ Bioremediation Techniques -- 4.4.3.2 Intrinsic In Situ Bioremediation -- 4.4.3.3 Engineered In Situ Bioremediation -- 4.4.4 Windrows -- 4.4.5 Bioslurping -- 4.4.6 Bioventing -- 4.4.7 Phytoremediation -- 4.4.8 Biosparging -- 4.5 Bioremediation of Various Pollutants -- 4.5.1 Bioremediation for Inorganic Pollutants -- 4.5.2 Bioremediation for Organic Pollutants -- 4.6 Recent Advancement and Challenges in Bioremediation. | |
| 4.6.1 Bioinformatics Approaches in Bioremediation -- 4.6.2 Bioremediation Tools Based on Omics -- 4.6.2.1 Transcriptomics and Metatranscriptomics -- 4.6.2.2 Genomics -- 4.6.2.3 Proteomics and Metabolomics -- 4.6.3 Bioremediation Using Nanotechnological Methods -- 4.6.3.1 Designing the Synthetic Microbial Communities -- 4.6.3.2 Engineered Polymeric Nanoparticles for Hydrophobic Contaminant Bioremediation -- 4.6.3.3 Nanotechnology and Microbes -- 4.6.3.4 Genetic and Metabolic Engineering -- 4.7 Advantages and Disadvantages -- 4.8 Conclusion -- 4.9 Future Perspective -- References -- Chapter 5 How Can Plant-microbe Interactions be used for the Bioremediation of Metals in Water Bodies? -- 5.1 Water Contamination Issues -- 5.2 Metal Contamination Effects -- 5.3 Metal Bioremediation -- 5.4 Aquatic Macrophytes in Metal Phytoremediation Processes -- 5.5 Microorganisms in Metal Remediation -- 5.5.1 Microorganism Metal Resistance Mechanisms -- 5.6 Interaction Between Aquatic Macrophytes and Microorganisms -- 5.7 Conclusion -- References -- Chapter 6 Extremophilic Microorganisms for Environmental Bioremediation -- 6.1 Introduction -- 6.2 Extremophiles -- 6.3 Extremophilic Microorganisms Under Extreme Conditions -- 6.3.1 Acidophilic Microorganisms -- 6.3.2 Alkaliphilic Microorganisms -- 6.3.3 Halophilic -- 6.3.4 Thermophiles -- 6.3.5 Piezophile Microorganism -- 6.3.6 Psychrophilic Microorganisms -- 6.3.7 Radiophiles -- 6.4 Extremophiles Applications for Environmental Bioremediation -- 6.4.1 Treatment of Radioactive Waste -- 6.5 Bioremediation of Petroleum Product -- 6.5.1 Petroleum Hydrocarbon Microbial Degradation in Hypersaline Environments -- 6.5.2 Low-Temperature Environments, Microbial Degradation of Petroleum Hydrocarbons Occurrence -- 6.5.3 In High-Temperature Environments, Microbial Degradation of Petroleum Hydrocarbons. | |
| 6.5.4 Removal of Heavy Metal Pollutants -- 6.5.5 Degradation of Organic Pollutants -- 6.5.6 Wastewater Treatment -- 6.5.7 Textile Dye Degradation -- 6.5.8 Bioremediation of Pesticides -- 6.6 Conclusion and Future Perspective -- References -- Chapter 7 Bacterial/Fungal Inoculants: Application as Bio Stimulants -- 7.1 Introduction -- 7.1.1 Biological Nitrogen Fixation (BNF) -- 7.1.2 Production of an Iron Chelating Compound -- 7.1.3 Phytohormone Production -- 7.1.4 Solubilization of Phosphate (P) -- 7.2 Arbuscular Mycorrhizal Fungi (AMF) -- 7.2.1 Microbial Inoculants as Pathogens or Parasites -- 7.2.2 Other than Bacterial/Fungal Inoculants Algal Extracts also Play Important Role -- 7.2.3 Disruption of Ecosystem Services -- 7.2.4 World Market for PGPR-Based Biostimulants -- 7.3 Conclusion -- References -- Chapter 8 Microbial Inoculants and Their Potential Application in Bioremediation: Emphasis on Agrochemicals -- 8.1 Introduction -- 8.2 Pollution of Different Matrices by Agrochemicals -- 8.2.1 Soil -- 8.2.2 Water -- 8.2.3 Air -- 8.3 Different Strategies Employed in Bioremediation -- 8.3.1 In Situ Biodegradation Strategies -- 8.3.2 Ex Situ Biodegradation Strategies -- 8.4 Microbe-Mediated Bioremediation and Recent Advances -- 8.4.1 Bacterial Bioremediation -- 8.4.2 Fungal Bioremediation -- 8.4.3 Microalgae and Diatom-Based Bioremediation -- 8.5 Novel Enzymes or Genes Involved in Bioremediation of Pollutants -- 8.6 Conclusion -- References -- Chapter 9 Porous Nanomaterials for Enzyme Immobilization and Bioremediation Applications -- 9.1 Introduction -- 9.2 Enzyme Immobilization -- 9.3 Model Enzymes With Multifunctional Attributes -- 9.3.1 Laccases -- 9.3.3 Peroxidases, i.e., Lignin and Manganese -- 9.3.4 Horseradish Peroxidases -- 9.4 Supports for Enzyme Immobilization -- 9.5 Inorganic Materials as Support Matrices. | |
| 9.6 Organic Materials as Support Matrices -- 9.7 Synthetic Polymers as Support Matrices -- 9.8 Nanomaterials as Supports for Enzyme Immobilization -- 9.9 Porous Nanomaterials as Supports for Enzyme Immobilization -- 9.10 Advantages of Enzyme Immobilization -- 9.10.1 Stabilization -- 9.10.2 Recovery and Reusability -- 9.10.3 Flexibility -- 9.11 Metal-Organic Frameworks as Supports for Enzyme Immobilization -- 9.12 Bioremediation Applications of Enzyme Immobilized Porous Nanomaterials -- 9.13 Future Directions -- 9.14 Conclusion -- References -- Chapter 10 Effects of Microbial Inoculants on Soil Nutrients and Microorganisms -- 10.1 Introduction -- 10.2 Microbial Inoculants and Soil Nutrients -- 10.3 Influence of Microbial Inoculants on Soil Nutrient Quality -- 10.3.1 Nitrogen -- 10.3.1.1 Symbiotic Nitrogen Fixation -- 10.3.1.2 Nonsymbiotic Nitrogen Fixation -- 10.3.2 Phosphorous -- 10.3.3 Potassium -- 10.3.4 Zinc -- 10.4 Impact of Microbial Inoculants on Natural Soil Microbial Communities -- 10.5 Microbial Inoculants: Mechanisms Involved in Affecting the Resident Microbial Community -- 10.5.1 Competition -- 10.5.2 Antagonism -- 10.5.3 Synergism -- 10.5.4 Indirect Effect Through Root Exudation -- 10.6 Effect of Monoinoculation Versus Coinoculation -- 10.7 Conclusion -- References -- Chapter 11 Bacterial Treatment of Industrial Wastewaters: Applications and Challenges -- 11.1 Introduction -- 11.2 Composition and Nature of Various Industrial Wastewater -- 11.2.1 Types and Sources of Wastewater on the Basis of Wastewater Production -- 11.2.2 Characteristics of Industrial Wastewater -- 11.2.2.1 Physical Characteristics of Wastewater -- 11.2.2.2 Chemical Characteristics of Wastewater -- 11.2.3 Biological Characteristics of Wastewater -- 11.3 Role of Bacteria in Biodegradation of Specific Pollutant Found in Wastewater. | |
| 11.4 Different Approaches and Mechanism of Bacterial Bioremediation in Industrial Wastewater. | |
| Sommario/riassunto: | This book explores the use of microbes in managing hazardous contaminants, focusing on sustainable and innovative approaches to remediation. It covers various microbial methods for wastewater treatment, the production and application of nanoparticles, and the degradation of organic pollutants. The book provides insights into microbial enzyme mechanisms, xenobiotic remediation, and plant-microbe interactions for metal removal in water bodies. It also discusses the role of extremophiles in environmental cleanup and the application of bacterial and algal inoculants as biostimulants. The intended audience includes environmental scientists, biotechnologists, and researchers interested in microbial remediation technologies. |
| Titolo autorizzato: | Microbes Based Approaches for the Management of Hazardous Contaminants ![]() |
| ISBN: | 9781119851158 |
| 1119851157 | |
| 9781119851141 | |
| 1119851149 | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9911019735703321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |