Vai al contenuto principale della pagina

Liouville-Riemann-Roch theorems on Abelian coverings / / Minh Kha, Peter Kuchment



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Kha Minh Visualizza persona
Titolo: Liouville-Riemann-Roch theorems on Abelian coverings / / Minh Kha, Peter Kuchment Visualizza cluster
Pubblicazione: Cham, Switzerland : , : Springer, , [2021]
©2021
Edizione: 1st ed. 2021.
Descrizione fisica: 1 online resource (XII, 96 p. 2 illus., 1 illus. in color.)
Disciplina: 515.353
Soggetto topico: Differential equations, Elliptic
Riemann-Roch theorems
Persona (resp. second.): KuchmentPeter <1949->
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Preliminaries -- The Main Results -- Proofs of the Main Results -- Specific Examples of Liouville-Riemann-Roch Theorems -- Auxiliary Statements and Proofs of Technical Lemmas -- Final Remarks and Conclusions.
Sommario/riassunto: This book is devoted to computing the index of elliptic PDEs on non-compact Riemannian manifolds in the presence of local singularities and zeros, as well as polynomial growth at infinity. The classical Riemann–Roch theorem and its generalizations to elliptic equations on bounded domains and compact manifolds, due to Maz’ya, Plameneskii, Nadirashvilli, Gromov and Shubin, account for the contribution to the index due to a divisor of zeros and singularities. On the other hand, the Liouville theorems of Avellaneda, Lin, Li, Moser, Struwe, Kuchment and Pinchover provide the index of periodic elliptic equations on abelian coverings of compact manifolds with polynomial growth at infinity, i.e. in the presence of a "divisor" at infinity. A natural question is whether one can combine the Riemann–Roch and Liouville type results. This monograph shows that this can indeed be done, however the answers are more intricate than one might initially expect. Namely, the interaction between the finite divisor and the point at infinity is non-trivial. The text is targeted towards researchers in PDEs, geometric analysis, and mathematical physics.
Titolo autorizzato: Liouville-Riemann-Roch theorems on Abelian coverings  Visualizza cluster
ISBN: 3-030-67428-2
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 996466549803316
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Serie: Lecture notes in mathematics (Springer-Verlag) ; ; Volume 2245.