00895nam2-22003251i-450-99000203948040332120090330154728.0000203948FED01000203948(Aleph)000203948FED0100020394820030910d1881----km-y0itay50------bafre<<Les >>fourmis<<Les >>guêpesEd. AndreBeaune[s.n.]1881917 p., 46 tv. col.25 cm0010002039462001Species des Hymenopteres d'Europe et d'Algerie2ImenotteriVespidaeFormicidae595.79André,Edmond360533ITUNINARICAUNIMARCBK99000203948040332161 V D.5/12.022685DAGENDAGENGuêpes407782Fourmis407781UNINA02944oam 2200505 450 99646654980331620210703190409.03-030-67428-210.1007/978-3-030-67428-1(CKB)4100000011763230(DE-He213)978-3-030-67428-1(MiAaPQ)EBC6478496(PPN)253855748(EXLCZ)99410000001176323020210703d2021 uy 0engurnn|008mamaatxtrdacontentcrdamediacrrdacarrierLiouville-Riemann-Roch theorems on Abelian coverings /Minh Kha, Peter Kuchment1st ed. 2021.Cham, Switzerland :Springer,[2021]©20211 online resource (XII, 96 p. 2 illus., 1 illus. in color.) Lecture Notes in Mathematics ;Volume 22453-030-67427-4 Includes bibliographical references and index.Preliminaries -- The Main Results -- Proofs of the Main Results -- Specific Examples of Liouville-Riemann-Roch Theorems -- Auxiliary Statements and Proofs of Technical Lemmas -- Final Remarks and Conclusions.This book is devoted to computing the index of elliptic PDEs on non-compact Riemannian manifolds in the presence of local singularities and zeros, as well as polynomial growth at infinity. The classical Riemann–Roch theorem and its generalizations to elliptic equations on bounded domains and compact manifolds, due to Maz’ya, Plameneskii, Nadirashvilli, Gromov and Shubin, account for the contribution to the index due to a divisor of zeros and singularities. On the other hand, the Liouville theorems of Avellaneda, Lin, Li, Moser, Struwe, Kuchment and Pinchover provide the index of periodic elliptic equations on abelian coverings of compact manifolds with polynomial growth at infinity, i.e. in the presence of a "divisor" at infinity. A natural question is whether one can combine the Riemann–Roch and Liouville type results. This monograph shows that this can indeed be done, however the answers are more intricate than one might initially expect. Namely, the interaction between the finite divisor and the point at infinity is non-trivial. The text is targeted towards researchers in PDEs, geometric analysis, and mathematical physics.Lecture notes in mathematics (Springer-Verlag) ;Volume 2245.Differential equations, EllipticRiemann-Roch theoremsDifferential equations, Elliptic.Riemann-Roch theorems.515.353Kha Minh791289Kuchment Peter1949-MiAaPQMiAaPQUtOrBLWBOOK996466549803316Liouville-Riemann-Roch theorems on Abelian coverings2831540UNISA01602nam a22003251i 450099100223805970753620030708111703.0030925s19uu be |||||||||||||||||lat b12261294-39ule_instARCHE-030888ExLBiblioteca InterfacoltàitaA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l.70.0922Anselmus :Cantuariensis159583S. Anselmi ex Beccensi abbate Cantuariensis archiepiscopi Opera omnia :nec non Eadmeri monachi historia novorum et alia opuscula /labore ac studio D. Gabrielis Gerberon ...Editio nova opusculis recens editis illustrata /accurante J.-P. MigneTurnholti :Typographi Brepols editores pontificii,[19..]1224 col. ;28 cmPatrologiae cursus completus omnium SS. patrum doctorum scriptorumque ecclesiasticorum sive Latinorum sive Graecorum.Patrologiae latinae ;158In testa al fornt.: Saeculum XII.ChiesaStoriaSec. 12. FontiCristianesimoStoriaSec. 12. FontiTeologiaMedioevoFontiEadmerus :Cantuariensis<ca. 1060-ca.1141>Gerberon, Gabriel.b1226129402-04-1408-10-03991002238059707536LE002 P.L. 15812002000497314le002-E0.00-no 00000.i1265184908-10-03S. Anselmi ex Beccensi abbate Cantuariensis archiepiscopi Opera omnia1381603UNISALENTOle00208-10-03ma -latbe 01