Vai al contenuto principale della pagina
| Autore: |
Rallis Stephen <1942->
|
| Titolo: |
L functions and the oscillator representation / / Stephen Rallis
|
| Pubblicazione: | Berlin, Germany ; ; New York, New York : , : Springer-Verlag, , [1987] |
| ©1987 | |
| Edizione: | 1st ed. 1987. |
| Descrizione fisica: | 1 online resource (XVI, 240 p.) |
| Disciplina: | 512.7 |
| Soggetto topico: | Representations of groups |
| Number theory | |
| Classificazione: | 10D05 |
| Note generali: | Bibliographic Level Mode of Issuance: Monograph |
| Nota di contenuto: | Notation and preliminaries -- Special Eisenstein series on orthogonal groups -- Siegel formula revisited -- Inner product formulae -- Siegel formula — Compact case -- Local l-factors -- Global theory. |
| Sommario/riassunto: | These notes are concerned with showing the relation between L-functions of classical groups (*F1 in particular) and *F2 functions arising from the oscillator representation of the dual reductive pair *F1 *F3 O(Q). The problem of measuring the nonvanishing of a *F2 correspondence by computing the Petersson inner product of a *F2 lift from *F1 to O(Q) is considered. This product can be expressed as the special value of an L-function (associated to the standard representation of the L-group of *F1) times a finite number of local Euler factors (measuring whether a given local representation occurs in a given oscillator representation). The key ideas used in proving this are (i) new Rankin integral representations of standard L-functions, (ii) see-saw dual reductive pairs and (iii) Siegel-Weil formula. The book addresses readers who specialize in the theory of automorphic forms and L-functions and the representation theory of Lie groups. N. |
| Titolo autorizzato: | L-functions and the oscillator representation ![]() |
| ISBN: | 3-540-47761-6 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 996466515403316 |
| Lo trovi qui: | Univ. di Salerno |
| Opac: | Controlla la disponibilità qui |