Vai al contenuto principale della pagina
| Autore: |
Priestley H. A (Hilary A.)
|
| Titolo: |
Introduction to complex analysis / / H.A. Priestley
|
| Pubblicazione: | Oxford : , : Oxford University Press, , 2023 |
| Edizione: | Second edition. |
| Descrizione fisica: | 1 online resource (343 p.) |
| Disciplina: | 515.9 |
| Soggetto topico: | Mathematical analysis |
| Functions of complex variables | |
| Note generali: | Previous edition: Oxford : Clarendon, 1990. |
| Previously issued in print: 2003. | |
| Nota di bibliografia: | Includes bibliographical references and index. |
| Nota di contenuto: | Cover; Contents; Notation and terminology; 1. The complex plane; Complex numbers; Algebra in the complex plane; Conjugation, modulus, and inequalities; Exercises; 2. Geometry in the complex plane; Lines and circles; The extended complex plane and the Riemann sphere; Möbius transformations; Exercises; 3. Topology and analysis in the complex plane; Open sets and closed sets in the complex plane; Convexity and connectedness; Limits and continuity; Exercises; 4. Paths; Introducing curves and paths; Properties of paths and contours; Exercises; 5. Holomorphic functions |
| Differentiation and the Cauchy-Riemann equationsHolomorphic functions; Exercises; 6. Complex series and power series; Complex series; Power series; A proof of the Differentiation theorem for power series; Exercises; 7. A cornucopia of holomorphic functions; The exponential function; Complex trigonometric and hyperbolic functions; Zeros and periodicity; Argument, logarithms, and powers; Holomorphic branches of some simple multifunctions; Exercises; 8. Conformal mapping; Conformal mapping; Some standard conformal mappings; Mappings of regions by standard mappings; Building conformal mappings | |
| Exercises9. Multifunctions; Branch points and multibranches; Cuts and holomorphic branches; Exercises; 10. Integration in the complex plane; Integration along paths; The Fundamental theorem of calculus; Exercises; 11. Cauchy's theorem: basic track; Cauchy's theorem; Deformation; Logarithms again; Exercises; 12. Cauchy's theorem: advanced track; Deformation and homotopy; Holomorphic functions in simply connected regions; Argument and index; Cauchy's theorem revisited; Exercises; 13. Cauchy's formulae; Cauchy's integral formula; Higher-order derivatives; Exercises | |
| 14. Power series representationIntegration of series in general and power series in particular; Taylor's theorem; Multiplication of power series; A primer on uniform convergence; Exercises; 15. Zeros of holomorphic functions; Characterizing zeros; The Identity theorem and the Uniqueness theorem; Counting zeros; Exercises; 16. Holomorphic functions: further theory; The Maximum modulus theorem; Holomorphic mappings; Exercises; 17. Singularities; Laurent's theorem; Singularities; Meromorphic functions; Exercises; 18. Cauchy's residue theorem; Residues and Cauchy's residue theorem | |
| Calculation of residuesExercises; 19. A technical toolkit for contour integration; Evaluating real integrals by contour integration; Inequalities and limits; Estimation techniques; Improper and principal-value integrals; Exercises; 20. Applications of contour integration; Integrals of rational functions; Integrals of other functions with a finite number of poles; Integrals involving functions with infinitely many poles; Integrals involving multifunctions; Evaluation of definite integrals: overview (basic track); Summation of series; Further techniques; Exercises; 21. The Laplace transform | |
| Basic properties and evaluation of Laplace transforms | |
| Sommario/riassunto: | This second edition of Priestley's well-known text is aimed at students taking an introductory core course in Complex Analysis, a classical and central area of mathematics. Graded exercises are presented throughout the text along with worked examples on the more elementary topics. |
| Titolo autorizzato: | Introduction to complex analysis ![]() |
| ISBN: | 1-383-02422-7 |
| 0-19-103720-6 | |
| 0-19-158333-2 | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910971001503321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |