1.

Record Nr.

UNINA9910563082203321

Autore

Dorado Edilson Iles

Titolo

Proceso enfermero en la atención al niño y al adolescente

Pubbl/distr/stampa

Colombia, : Universidad Santiago de Cali, 2021

Descrizione fisica

1 online resource (504 p.)

Soggetti

Nurse / patient relationship

Lingua di pubblicazione

Spagnolo

Formato

Materiale a stampa

Livello bibliografico

Monografia

Sommario/riassunto

La elaboración de este texto de estudio hace parte de la asignatura Cuidado del niño(a) y adolescente, dirigida a los estudiantes de pregrado de Enfermería, de la Universidad Santiago de Cali, con el propósito de contribuir en el aprendizaje y la adquisición de competencias en la atención integral de la población pediátrica y su familia.    Han participado en la elaboración enfermeras y enfermeros docentes de la Universidad Santiago de Cali, desde sus conocimientos y experiencia, con la evidencia disponible han aportado en la elaboración de los diferentes capítulos, cuidados del recién nacido, crecimiento y desarrollo, el niño(a) con problemas de salud frecuentes y atención del niño(a) en urgencias.



2.

Record Nr.

UNINA9910971001503321

Autore

Priestley H. A (Hilary A.)

Titolo

Introduction to complex analysis / / H.A. Priestley

Pubbl/distr/stampa

Oxford : , : Oxford University Press, , 2023

ISBN

1-383-02422-7

0-19-103720-6

0-19-158333-2

Edizione

[Second edition.]

Descrizione fisica

1 online resource (343 p.)

Collana

Oxford scholarship online

Disciplina

515.9

Soggetti

Mathematical analysis

Functions of complex variables

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Previous edition: Oxford : Clarendon, 1990.

Previously issued in print: 2003.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Cover; Contents; Notation and terminology; 1. The complex plane; Complex numbers; Algebra in the complex plane; Conjugation, modulus, and inequalities; Exercises; 2. Geometry in the complex plane; Lines and circles; The extended complex plane and the Riemann sphere; Möbius transformations; Exercises; 3. Topology and analysis in the complex plane; Open sets and closed sets in the complex plane; Convexity and connectedness; Limits and continuity; Exercises; 4. Paths; Introducing curves and paths; Properties of paths and contours; Exercises; 5. Holomorphic functions

Differentiation and the Cauchy-Riemann equationsHolomorphic functions; Exercises; 6. Complex series and power series; Complex series; Power series; A proof of the Differentiation theorem for power series; Exercises; 7. A cornucopia of holomorphic functions; The exponential function; Complex trigonometric and hyperbolic functions; Zeros and periodicity; Argument, logarithms, and powers; Holomorphic branches of some simple multifunctions; Exercises; 8. Conformal mapping; Conformal mapping; Some standard conformal mappings; Mappings of regions by standard mappings; Building conformal mappings

Exercises9. Multifunctions; Branch points and multibranches; Cuts and



holomorphic branches; Exercises; 10. Integration in the complex plane; Integration along paths; The Fundamental theorem of calculus; Exercises; 11. Cauchy's theorem: basic track; Cauchy's theorem; Deformation; Logarithms again; Exercises; 12. Cauchy's theorem: advanced track; Deformation and homotopy; Holomorphic functions in simply connected regions; Argument and index; Cauchy's theorem revisited; Exercises; 13. Cauchy's formulae; Cauchy's integral formula; Higher-order derivatives; Exercises

14. Power series representationIntegration of series in general and power series in particular; Taylor's theorem; Multiplication of power series; A primer on uniform convergence; Exercises; 15. Zeros of holomorphic functions; Characterizing zeros; The Identity theorem and the Uniqueness theorem; Counting zeros; Exercises; 16. Holomorphic functions: further theory; The Maximum modulus theorem; Holomorphic mappings; Exercises; 17. Singularities; Laurent's theorem; Singularities; Meromorphic functions; Exercises; 18. Cauchy's residue theorem; Residues and Cauchy's residue theorem

Calculation of residuesExercises; 19. A technical toolkit for contour integration; Evaluating real integrals by contour integration; Inequalities and limits; Estimation techniques; Improper and principal-value integrals; Exercises; 20. Applications of contour integration; Integrals of rational functions; Integrals of other functions with a finite number of poles; Integrals involving functions with infinitely many poles; Integrals involving multifunctions; Evaluation of definite integrals: overview (basic track); Summation of series; Further techniques; Exercises; 21. The Laplace transform

Basic properties and evaluation of Laplace transforms

Sommario/riassunto

This second edition of Priestley's well-known text is aimed at students taking an introductory core course in Complex Analysis, a classical and central area of mathematics. Graded exercises are presented throughout the text along with worked examples on the more elementary topics.