| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910563082203321 |
|
|
Autore |
Dorado Edilson Iles |
|
|
Titolo |
Proceso enfermero en la atención al niño y al adolescente |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Colombia, : Universidad Santiago de Cali, 2021 |
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (504 p.) |
|
|
|
|
|
|
Soggetti |
|
Nurse / patient relationship |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Sommario/riassunto |
|
La elaboración de este texto de estudio hace parte de la asignatura Cuidado del niño(a) y adolescente, dirigida a los estudiantes de pregrado de Enfermería, de la Universidad Santiago de Cali, con el propósito de contribuir en el aprendizaje y la adquisición de competencias en la atención integral de la población pediátrica y su familia. Han participado en la elaboración enfermeras y enfermeros docentes de la Universidad Santiago de Cali, desde sus conocimientos y experiencia, con la evidencia disponible han aportado en la elaboración de los diferentes capítulos, cuidados del recién nacido, crecimiento y desarrollo, el niño(a) con problemas de salud frecuentes y atención del niño(a) en urgencias. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910971001503321 |
|
|
Autore |
Priestley H. A (Hilary A.) |
|
|
Titolo |
Introduction to complex analysis / / H.A. Priestley |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Oxford : , : Oxford University Press, , 2023 |
|
|
|
|
|
|
|
ISBN |
|
1-383-02422-7 |
0-19-103720-6 |
0-19-158333-2 |
|
|
|
|
|
|
|
|
Edizione |
[Second edition.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (343 p.) |
|
|
|
|
|
|
Collana |
|
Oxford scholarship online |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Mathematical analysis |
Functions of complex variables |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Previous edition: Oxford : Clarendon, 1990. |
Previously issued in print: 2003. |
|
|
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Cover; Contents; Notation and terminology; 1. The complex plane; Complex numbers; Algebra in the complex plane; Conjugation, modulus, and inequalities; Exercises; 2. Geometry in the complex plane; Lines and circles; The extended complex plane and the Riemann sphere; Möbius transformations; Exercises; 3. Topology and analysis in the complex plane; Open sets and closed sets in the complex plane; Convexity and connectedness; Limits and continuity; Exercises; 4. Paths; Introducing curves and paths; Properties of paths and contours; Exercises; 5. Holomorphic functions |
Differentiation and the Cauchy-Riemann equationsHolomorphic functions; Exercises; 6. Complex series and power series; Complex series; Power series; A proof of the Differentiation theorem for power series; Exercises; 7. A cornucopia of holomorphic functions; The exponential function; Complex trigonometric and hyperbolic functions; Zeros and periodicity; Argument, logarithms, and powers; Holomorphic branches of some simple multifunctions; Exercises; 8. Conformal mapping; Conformal mapping; Some standard conformal mappings; Mappings of regions by standard mappings; Building conformal mappings |
Exercises9. Multifunctions; Branch points and multibranches; Cuts and |
|
|
|
|
|
|
|
|
|
|
|
holomorphic branches; Exercises; 10. Integration in the complex plane; Integration along paths; The Fundamental theorem of calculus; Exercises; 11. Cauchy's theorem: basic track; Cauchy's theorem; Deformation; Logarithms again; Exercises; 12. Cauchy's theorem: advanced track; Deformation and homotopy; Holomorphic functions in simply connected regions; Argument and index; Cauchy's theorem revisited; Exercises; 13. Cauchy's formulae; Cauchy's integral formula; Higher-order derivatives; Exercises |
14. Power series representationIntegration of series in general and power series in particular; Taylor's theorem; Multiplication of power series; A primer on uniform convergence; Exercises; 15. Zeros of holomorphic functions; Characterizing zeros; The Identity theorem and the Uniqueness theorem; Counting zeros; Exercises; 16. Holomorphic functions: further theory; The Maximum modulus theorem; Holomorphic mappings; Exercises; 17. Singularities; Laurent's theorem; Singularities; Meromorphic functions; Exercises; 18. Cauchy's residue theorem; Residues and Cauchy's residue theorem |
Calculation of residuesExercises; 19. A technical toolkit for contour integration; Evaluating real integrals by contour integration; Inequalities and limits; Estimation techniques; Improper and principal-value integrals; Exercises; 20. Applications of contour integration; Integrals of rational functions; Integrals of other functions with a finite number of poles; Integrals involving functions with infinitely many poles; Integrals involving multifunctions; Evaluation of definite integrals: overview (basic track); Summation of series; Further techniques; Exercises; 21. The Laplace transform |
Basic properties and evaluation of Laplace transforms |
|
|
|
|
|
|
Sommario/riassunto |
|
This second edition of Priestley's well-known text is aimed at students taking an introductory core course in Complex Analysis, a classical and central area of mathematics. Graded exercises are presented throughout the text along with worked examples on the more elementary topics. |
|
|
|
|
|
|
|
| |