Vai al contenuto principale della pagina

Hybrid Intelligent Technologies in Energy Demand Forecasting / / by Wei-Chiang Hong



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Hong Wei-Chiang Visualizza persona
Titolo: Hybrid Intelligent Technologies in Energy Demand Forecasting / / by Wei-Chiang Hong Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Edizione: 1st ed. 2020.
Descrizione fisica: 1 online resource (XII, 179 p. 60 illus., 51 illus. in color.)
Disciplina: 006.3
Soggetto topico: Energy policy
Energy and state
Computational intelligence
Computer simulation
Statistical physics
Renewable energy resources
Energy Policy, Economics and Management
Computational Intelligence
Simulation and Modeling
Applications of Nonlinear Dynamics and Chaos Theory
Renewable and Green Energy
Nota di contenuto: Introduction -- Modeling for Energy Demand Forecasting -- Data Pre-processing Methods -- Hybridizing Meta-heuristic Algorithms with CMM and QCM for SVR’s Parameters Determination -- Hybridizing QCM with Dragonfly algorithm to Enrich the Solution Searching Be-haviors -- Phase Space Reconstruction and Recurrence Plot Theory .
Sommario/riassunto: This book is written for researchers and postgraduates who are interested in developing high-accurate energy demand forecasting models that outperform traditional models by hybridizing intelligent technologies. It covers meta-heuristic algorithms, chaotic mapping mechanism, quantum computing mechanism, recurrent mechanisms, phase space reconstruction, and recurrence plot theory. The book clearly illustrates how these intelligent technologies could be hybridized with those traditional forecasting models. This book provides many figures to deonstrate how these hybrid intelligent technologies are being applied to exceed the limitations of existing models.
Titolo autorizzato: Hybrid Intelligent Technologies in Energy Demand Forecasting  Visualizza cluster
ISBN: 3-030-36529-8
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910373947203321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui