LEADER 03559nam 22006615 450 001 9910373947203321 005 20200701145711.0 010 $a3-030-36529-8 024 7 $a10.1007/978-3-030-36529-5 035 $a(CKB)4940000000159085 035 $a(DE-He213)978-3-030-36529-5 035 $a(MiAaPQ)EBC6005215 035 $a(PPN)242848850 035 $a(EXLCZ)994940000000159085 100 $a20200101d2020 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aHybrid Intelligent Technologies in Energy Demand Forecasting /$fby Wei-Chiang Hong 205 $a1st ed. 2020. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2020. 215 $a1 online resource (XII, 179 p. 60 illus., 51 illus. in color.) 311 $a3-030-36528-X 327 $aIntroduction -- Modeling for Energy Demand Forecasting -- Data Pre-processing Methods -- Hybridizing Meta-heuristic Algorithms with CMM and QCM for SVR?s Parameters Determination -- Hybridizing QCM with Dragonfly algorithm to Enrich the Solution Searching Be-haviors -- Phase Space Reconstruction and Recurrence Plot Theory . 330 $aThis book is written for researchers and postgraduates who are interested in developing high-accurate energy demand forecasting models that outperform traditional models by hybridizing intelligent technologies. It covers meta-heuristic algorithms, chaotic mapping mechanism, quantum computing mechanism, recurrent mechanisms, phase space reconstruction, and recurrence plot theory. The book clearly illustrates how these intelligent technologies could be hybridized with those traditional forecasting models. This book provides many figures to deonstrate how these hybrid intelligent technologies are being applied to exceed the limitations of existing models. 606 $aEnergy policy 606 $aEnergy and state 606 $aComputational intelligence 606 $aComputer simulation 606 $aStatistical physics 606 $aRenewable energy resources 606 $aEnergy Policy, Economics and Management$3https://scigraph.springernature.com/ontologies/product-market-codes/112000 606 $aComputational Intelligence$3https://scigraph.springernature.com/ontologies/product-market-codes/T11014 606 $aSimulation and Modeling$3https://scigraph.springernature.com/ontologies/product-market-codes/I19000 606 $aApplications of Nonlinear Dynamics and Chaos Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/P33020 606 $aRenewable and Green Energy$3https://scigraph.springernature.com/ontologies/product-market-codes/111000 615 0$aEnergy policy. 615 0$aEnergy and state. 615 0$aComputational intelligence. 615 0$aComputer simulation. 615 0$aStatistical physics. 615 0$aRenewable energy resources. 615 14$aEnergy Policy, Economics and Management. 615 24$aComputational Intelligence. 615 24$aSimulation and Modeling. 615 24$aApplications of Nonlinear Dynamics and Chaos Theory. 615 24$aRenewable and Green Energy. 676 $a006.3 700 $aHong$b Wei-Chiang$4aut$4http://id.loc.gov/vocabulary/relators/aut$0913784 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910373947203321 996 $aHybrid Intelligent Technologies in Energy Demand Forecasting$92147609 997 $aUNINA