Vai al contenuto principale della pagina
| Autore: |
Tubbs Robert
|
| Titolo: |
Hilbert's Seventh Problem : Solutions and Extensions / / by Robert Tubbs
|
| Pubblicazione: | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2016 |
| Edizione: | 1st ed. 2016. |
| Descrizione fisica: | 1 online resource (IX, 85 p. 1 illus.) |
| Disciplina: | 510.9 |
| Soggetto topico: | Mathematics |
| History | |
| Functional analysis | |
| Integral equations | |
| Number theory | |
| History of Mathematical Sciences | |
| Functional Analysis | |
| Integral Equations | |
| Number Theory | |
| Nota di bibliografia: | Includes bibliographical references and index. |
| Nota di contenuto: | Chapter 1. Hilbert's seventh problem: Its statement and origins -- Chapter 2. The transcendence of e; and ep -- Chapter 3. Three partial solutions -- Chapter 4. Gelfond's solution -- Chapter 5. Schneider's solution -- Chapter 6. Hilbert's seventh problem and transcendental functions -- Chapter 7. Variants and generalizations. |
| Sommario/riassunto: | This exposition is primarily a survey of the elementary yet subtle innovations of several mathematicians between 1929 and 1934 that led to partial and then complete solutions to Hilbert’s Seventh Problem (from the International Congress of Mathematicians in Paris, 1900). This volume is suitable for both mathematics students, wishing to experience how different mathematical ideas can come together to establish results, and for research mathematicians interested in the fascinating progression of mathematical ideas that solved Hilbert’s problem and established a modern theory of transcendental numbers. . |
| Titolo autorizzato: | Hilbert's seventh problem ![]() |
| ISBN: | 981-10-2645-9 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910153655203321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |