LEADER 02870nam 22006255 450 001 9910153655203321 005 20250609111842.0 010 $a981-10-2645-9 024 7 $a10.1007/978-981-10-2645-4 035 $a(CKB)3710000000962129 035 $a(DE-He213)978-981-10-2645-4 035 $a(MiAaPQ)EBC4747044 035 $a(PPN)197135293 035 $a(MiAaPQ)EBC6237986 035 $a(EXLCZ)993710000000962129 100 $a20161122d2016 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aHilbert's Seventh Problem $eSolutions and Extensions /$fby Robert Tubbs 205 $a1st ed. 2016. 210 1$aSingapore :$cSpringer Nature Singapore :$cImprint: Springer,$d2016. 215 $a1 online resource (IX, 85 p. 1 illus.) 225 1 $aIMSc Lecture Notes in Mathematics,$x2509-8098 311 08$a981-10-2644-0 320 $aIncludes bibliographical references and index. 327 $aChapter 1. Hilbert's seventh problem: Its statement and origins -- Chapter 2. The transcendence of e; and ep -- Chapter 3. Three partial solutions -- Chapter 4. Gelfond's solution -- Chapter 5. Schneider's solution -- Chapter 6. Hilbert's seventh problem and transcendental functions -- Chapter 7. Variants and generalizations. 330 $aThis exposition is primarily a survey of the elementary yet subtle innovations of several mathematicians between 1929 and 1934 that led to partial and then complete solutions to Hilbert?s Seventh Problem (from the International Congress of Mathematicians in Paris, 1900). This volume is suitable for both mathematics students, wishing to experience how different mathematical ideas can come together to establish results, and for research mathematicians interested in the fascinating progression of mathematical ideas that solved Hilbert?s problem and established a modern theory of transcendental numbers. . 410 0$aIMSc Lecture Notes in Mathematics,$x2509-8098 606 $aMathematics 606 $aHistory 606 $aFunctional analysis 606 $aIntegral equations 606 $aNumber theory 606 $aHistory of Mathematical Sciences 606 $aFunctional Analysis 606 $aIntegral Equations 606 $aNumber Theory 615 0$aMathematics. 615 0$aHistory. 615 0$aFunctional analysis. 615 0$aIntegral equations. 615 0$aNumber theory. 615 14$aHistory of Mathematical Sciences. 615 24$aFunctional Analysis. 615 24$aIntegral Equations. 615 24$aNumber Theory. 676 $a510.9 700 $aTubbs$b Robert$4aut$4http://id.loc.gov/vocabulary/relators/aut$0755936 906 $aBOOK 912 $a9910153655203321 996 $aHilbert's seventh problem$91523385 997 $aUNINA