Vai al contenuto principale della pagina

Foraging-Inspired Optimisation Algorithms / / by Anthony Brabazon, Seán McGarraghy



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Brabazon Anthony Visualizza persona
Titolo: Foraging-Inspired Optimisation Algorithms / / by Anthony Brabazon, Seán McGarraghy Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Edizione: 1st ed. 2018.
Descrizione fisica: 1 online resource (476 pages)
Disciplina: 519.3
Soggetto topico: Computer science
Computational intelligence
Artificial intelligence
Operations research
Management science
Theory of Computation
Computational Intelligence
Artificial Intelligence
Operations Research, Management Science
Operations Research and Decision Theory
Persona (resp. second.): McGarraghySeán
Nota di contenuto: Introduction -- Formal Models of Foraging -- Sensor Modalities -- Individual and Social Learning -- Introduction to Foraging Algorithms -- Mammals -- Bird Foraging Algorithms -- Fish Algorithms -- Ant Foraging Algorithms -- Honeybee Inspired Algorithms -- Bioluminescence Algorithms -- Spider Algorithms -- Worm Algorithm -- Bacteria Inspired Algorithms -- Slime Mould Foraging -- Plant Foraging Algorithms -- Group Search and Predatory Search -- Evolving Foraging Algorithms -- Conclusions.
Sommario/riassunto: This book is an introduction to relevant aspects of the foraging literature for algorithmic design, and an overview of key families of optimization algorithms that stem from a foraging metaphor. The authors first offer perspectives on foraging and foraging-inspired algorithms for optimization, they then explain the techniques inspired by the behaviors of vertebrates, invertebrates, and non-neuronal organisms, and they then discuss algorithms based on formal models of foraging, how to evolve a foraging strategy, and likely future developments. No prior knowledge of natural computing is assumed. This book will be of particular interest to graduate students, academics and practitioners in computer science, informatics, data science, management science, and other application domains.
Titolo autorizzato: Foraging-Inspired Optimisation Algorithms  Visualizza cluster
ISBN: 3-319-59156-8
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910734097503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Natural Computing Series, . 2627-6461