LEADER 03440nam 22006375 450 001 9910734097503321 005 20230719194545.0 010 $a3-319-59156-8 024 7 $a10.1007/978-3-319-59156-8 035 $a(CKB)4100000006674781 035 $a(MiAaPQ)EBC5528152 035 $a(DE-He213)978-3-319-59156-8 035 $a(PPN)230539424 035 $a(EXLCZ)994100000006674781 100 $a20180926d2018 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aForaging-Inspired Optimisation Algorithms /$fby Anthony Brabazon, Seán McGarraghy 205 $a1st ed. 2018. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2018. 215 $a1 online resource (476 pages) 225 1 $aNatural Computing Series,$x2627-6461 311 $a3-319-59155-X 327 $aIntroduction -- Formal Models of Foraging -- Sensor Modalities -- Individual and Social Learning -- Introduction to Foraging Algorithms -- Mammals -- Bird Foraging Algorithms -- Fish Algorithms -- Ant Foraging Algorithms -- Honeybee Inspired Algorithms -- Bioluminescence Algorithms -- Spider Algorithms -- Worm Algorithm -- Bacteria Inspired Algorithms -- Slime Mould Foraging -- Plant Foraging Algorithms -- Group Search and Predatory Search -- Evolving Foraging Algorithms -- Conclusions. 330 $aThis book is an introduction to relevant aspects of the foraging literature for algorithmic design, and an overview of key families of optimization algorithms that stem from a foraging metaphor. The authors first offer perspectives on foraging and foraging-inspired algorithms for optimization, they then explain the techniques inspired by the behaviors of vertebrates, invertebrates, and non-neuronal organisms, and they then discuss algorithms based on formal models of foraging, how to evolve a foraging strategy, and likely future developments. No prior knowledge of natural computing is assumed. This book will be of particular interest to graduate students, academics and practitioners in computer science, informatics, data science, management science, and other application domains. 410 0$aNatural Computing Series,$x2627-6461 606 $aComputer science 606 $aComputational intelligence 606 $aArtificial intelligence 606 $aOperations research 606 $aManagement science 606 $aTheory of Computation 606 $aComputational Intelligence 606 $aArtificial Intelligence 606 $aOperations Research, Management Science 606 $aOperations Research and Decision Theory 615 0$aComputer science. 615 0$aComputational intelligence. 615 0$aArtificial intelligence. 615 0$aOperations research. 615 0$aManagement science. 615 14$aTheory of Computation. 615 24$aComputational Intelligence. 615 24$aArtificial Intelligence. 615 24$aOperations Research, Management Science . 615 24$aOperations Research and Decision Theory. 676 $a519.3 700 $aBrabazon$b Anthony$4aut$4http://id.loc.gov/vocabulary/relators/aut$0841290 702 $aMcGarraghy$b Seán$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910734097503321 996 $aForaging-Inspired Optimisation Algorithms$93400446 997 $aUNINA