Vai al contenuto principale della pagina
| Autore: |
Gilitschenski Igor
|
| Titolo: |
Deterministic Sampling for Nonlinear Dynamic State Estimation
|
| Pubblicazione: | KIT Scientific Publishing, 2016 |
| Descrizione fisica: | 1 online resource (XVI, 167 p. p.) |
| Soggetto non controllato: | Density Approximation |
| DichteapproximationStochastic Filtering | |
| Directional Statistics | |
| Richtungsstatistik | |
| Sensor Data Fusion | |
| Sensordatenfusion | |
| Stochastische Filterung | |
| Sommario/riassunto: | The goal of this work is improving existing and suggesting novel filtering algorithms for nonlinear dynamic state estimation. Nonlinearity is considered in two ways: First, propagation is improved by proposing novel methods for approximating continuous probability distributions by discrete distributions defined on the same continuous domain. Second, nonlinear underlying domains are considered by proposing novel filters that inherently take the underlying geometry of these domains into account. |
| Titolo autorizzato: | Deterministic Sampling for Nonlinear Dynamic State Estimation ![]() |
| ISBN: | 1000051670 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910346774403321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |