LEADER 01859nam 2200397z- 450 001 9910346774403321 005 20210211 010 $a1000051670 035 $a(CKB)4920000000100779 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/44863 035 $a(oapen)doab44863 035 $a(EXLCZ)994920000000100779 100 $a20202102d2016 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aDeterministic Sampling for Nonlinear Dynamic State Estimation 210 $cKIT Scientific Publishing$d2016 215 $a1 online resource (XVI, 167 p. p.) 225 1 $aKarlsruhe Series on Intelligent Sensor-Actuator-Systems / Karlsruher Institut für Technologie, Intelligent Sensor-Actuator-Systems Laboratory 311 08$a3-7315-0473-1 330 $aThe goal of this work is improving existing and suggesting novel filtering algorithms for nonlinear dynamic state estimation. Nonlinearity is considered in two ways: First, propagation is improved by proposing novel methods for approximating continuous probability distributions by discrete distributions defined on the same continuous domain. Second, nonlinear underlying domains are considered by proposing novel filters that inherently take the underlying geometry of these domains into account. 610 $aDensity Approximation 610 $aDichteapproximationStochastic Filtering 610 $aDirectional Statistics 610 $aRichtungsstatistik 610 $aSensor Data Fusion 610 $aSensordatenfusion 610 $aStochastische Filterung 700 $aGilitschenski$b Igor$4auth$01327888 906 $aBOOK 912 $a9910346774403321 996 $aDeterministic Sampling for Nonlinear Dynamic State Estimation$93038240 997 $aUNINA