Vai al contenuto principale della pagina

Cellular Actuators : Modularity and Variability in Muscle-Inspired Actuation



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Ueda Jun Visualizza persona
Titolo: Cellular Actuators : Modularity and Variability in Muscle-Inspired Actuation Visualizza cluster
Pubblicazione: Oxford : , : Elsevier Science & Technology, , 2017
©2017
Descrizione fisica: 1 online resource (384 pages)
Disciplina: 621
Soggetto topico: Actuators - Design and construction
Piezoelectric devices
Robotics
Altri autori: SchultzJoshua A  
AsadaHarry  
Nota di contenuto: Front Cover -- Cellular Actuators -- Copyright -- Contents -- List of gures -- List of tables -- Introduction -- About this book -- Motivation for biologically inspired actuation -- Biological muscles and arti cial muscle-type actuators -- Cellular architecture -- Outline of this book -- Acknowledgment -- Historical overview -- Soft robots for unstructured environments -- Robot actuators -- Redundant actuators -- Generation of natural movements -- Cellular actuator concept -- Inspiration from biological muscles -- Binary control of an actuator array -- Broadcast feedback with stochastic recruitment -- Discussion -- 1 Structure of cellular actuators -- 1.1 Strain ampli ed piezoelectric actuators -- 1.1.1 Piezoelectric materials -- 1.1.2 Strain ampli cation mechanisms -- 1.1.3 MEMS-PZT cellular actuator -- 1.1.4 Discussion -- 1.2 Nested rhombus exponential strain ampli cation -- 1.2.1 Large effective strain piezoelectric actuators -- 1.2.2 Rhombus strain ampli cation mechanisms -- 1.2.3 Nested rhombus structure -- 1.2.4 Properties of ideal nested rhombus PZT actuators -- 1.2.5 Feasibility check for 20% effective strain -- 1.2.6 Discussion -- 1.3 Design of nested-rhombus cellular actuators -- 1.3.1 Nested rhombus mechanisms with structural exibility -- 1.3.2 Veri cation and calibration of 3-spring lumped parameter model -- 1.3.3 Prototype two-layer actuator unit -- 1.3.4 Contractile two-layer mechanism design -- 1.3.5 Tweezer-style piezoelectric end-effector -- 1.3.6 Three-layer rhomboidal mechanism design and its application to a camera positioning mechanism -- 1.3.7 Discussion -- 2 Modeling of cellular actuators -- 2.1 Two-port networks for single cell modeling -- 2.1.1 Why a more involved model is necessary -- 2.1.2 Two-port models of strain amplifying compliant mechanisms.
2.1.3 Finding expressions for the immittance parameters using Castigliano's theorem -- 2.1.4 Connecting strain ampli ers and ampli ed stacks together -- 2.1.5 Effectiveness of multiple layers and gures of merit -- 2.1.6 Amplifying still further with additional strain amplifying mechanisms -- 2.1.7 Discussion -- 2.2 Calibration of two-port network models -- 2.2.1 Model validation by nite element methods -- 2.2.2 Experimental results -- 2.2.3 Discussion -- 2.3 Modeling of actuator arrays: the nesting theorem: three-layer structure -- 2.3.1 Actuator compliance for nested ampli ed piezoelectric actuators -- 2.3.2 Antagonist pairs of compliant actuators -- 2.3.3 The rst and second nesting theorem: evaluating the perceived stiffness based on the stiffness of each layer -- 2.3.4 The three-layer structure -- 2.3.5 Discussion -- 2.4 Representation and characterization of complex actuator arrays -- 2.4.1 Graph-theoretic modeling -- 2.4.2 Cell -- 2.4.3 Connecting structures -- 2.4.4 Incidence matrices -- 2.4.5 Fingerprint method basics -- 2.4.6 Fingerprint-to-incidence matrix relationship -- 2.4.7 Automatic generation of actuator array topologies -- 2.4.8 Incidence matrix identity and similarity transforms -- 2.4.9 Robustness analysis -- 2.4.10 Discussion -- 3 Control of cellular actuators -- 3.1 Minimum switching discrete switching vibration suppression -- 3.1.1 Control strategies for exible mechatronic systems -- 3.1.2 Open-loop switching control methods -- 3.1.3 Redundantly actuated two-layer exible cellular actuator -- 3.1.4 Determination of switching pattern -- 3.1.5 Illustrative example of switching algorithm -- 3.1.6 Experimental setup -- 3.1.7 Experimental results -- 3.1.8 Non-ideal effects and command robustness -- 3.1.9 Discussion -- 3.2 Broadcast control for cellular actuator arrays -- 3.2.1 Cellular control system.
3.2.2 Broadcast feedback for cellular control system -- 3.2.3 Stability analysis of broadcast feedback -- 3.2.4 Simulation: uniform cellular array -- 3.2.5 Simulation: non-uniform cellular array -- 3.2.6 Discussion -- 3.3 Hysteresis loop control of hysteretic actuator arrays -- 3.3.1 Segmented binary control for hysteretic cellular actuator units -- 3.3.2 Implementation of hysteresis loop control of an SMA unit -- 3.3.3 Transition probability distribution and hysteresis loop -- 3.3.4 Localized stochastic transition -- 3.3.5 Broadcast control approach to the coordination of hysteric cellular actuator array -- 3.3.6 Centralized cell coordination -- 3.3.7 Simulation environment -- 3.3.8 Simulation results -- 3.3.9 Discussion -- 3.4 Supermartingale theory for broadcast control of distributed hysteretic systems -- 3.4.1 Anonymous control and stochastic recruitment -- 3.4.2 System representation -- 3.4.3 Aggregate state, internal dynamics, and observability -- 3.4.4 Control -- 3.4.5 Simulation -- 3.4.6 Robustness against cell failures -- 3.4.7 Contribution of preloading and refraction rule -- 3.4.8 Discussion -- 3.5 Signal-dependent variability of actuator arrays with oating-point quantization -- 3.5.1 Motor noise and cellular actuation -- 3.5.2 Floating-point quantization of cellular actuator arrays -- 3.5.3 Numerical example -- 3.5.4 Discussion -- 4 Application of cellular actuators -- 4.1 Variable stiffness cellular actuators -- 4.1.1 Variable stiffness actuators -- 4.1.2 Design of variable stiffness cellular architecture -- 4.1.3 Tunable resonant frequencies -- 4.1.4 Implementation of a PZT-based VSCA -- 4.1.5 Experimental results -- 4.1.6 Discussion -- 4.2 Bipolar buckling actuators -- 4.2.1 Strain ampli cation by structural buckling -- 4.2.2 Buckling for large displacement ampli cation -- 4.2.3 Redirecting stiffness.
4.2.4 Dual buckling unit mechanism -- 4.2.5 Force-displacement analysis -- 4.2.6 Dynamic bipolar motion -- 4.2.7 Prototyping buckling actuators -- 4.2.8 Static performance -- 4.2.9 Dynamic performance -- 4.2.10 Discussion -- 4.3 Self-sensing piezoelectric grasper -- 4.3.1 Self-sensing of ampli ed PZT actuators -- 4.3.2 Force magni cation for tweezer-style piezoelectric end-effector -- 4.3.3 Mechanical modeling -- 4.3.4 Combined electromechanical model of the tweezer device -- 4.3.5 On-site calibration procedure -- 4.3.6 Electrical circuit -- 4.3.7 Results -- 4.3.8 Discussion -- 4.4 Biologically inspired robotic camera orientation system -- 4.4.1 Robotic realization of saccades and smooth-pursuit -- 4.4.2 Dynamics-based oculomotor-visual coordination in rapid camera movements -- 4.4.3 Switching control of camera positioner -- 4.4.4 Dynamics-based blur kernel estimation for motion de-blurring -- 4.4.5 Dynamics-based fast panoramic image stitching -- 4.4.6 Discussion -- 5 Conclusion -- 5.1 Summary and future directions -- 5.1.1 Brief summary -- 5.1.2 Future work -- Nomenclature -- Appendix -- A.1 Modeling of hysteresis -- A.1.1 Hysteresis in piezoelectric actuators -- A.1.2 Hysteresis modeling -- A.2 Structural parameters of tweezer-style end-effector -- A.3 Piezoelectric driving circuit and control system -- A.3.1 Cédrat charge ampli ers -- A.3.2 Discrete switching piezoelectric drive circuit -- A.3.3 Hardware con guration of real-time controller -- A.4 Compliance matrix elements in Section 2.2 -- A.5 SMA cellular actuators -- A.5.1 SMA cellular actuator design -- A.5.2 Damped SMA array -- A.5.3 Dynamic SMA array -- A.5.4 Implementation of oating-point quantization into dynamic SMA actuator array -- A.5.5 Robotic arm with SMA cellular actuators -- A.6 Deterministic analysis and stability of expectation -- A.7 Proof of Lemma 2 in Section 3.4.
A.8 Recursive computation of probability Pr(Xt|X0) -- A.9 Proof of Lemma 2 in Section 4.1 -- Bibliography -- Index -- Back Cover.
Titolo autorizzato: Cellular Actuators  Visualizza cluster
ISBN: 0-12-803706-7
0-12-803687-7
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910583335203321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui