1.

Record Nr.

UNINA9910820370103321

Autore

Skwarek Agata

Titolo

IMAPS-CPMT 2014 Poland / / Agata Skwarek, Martin Goosey

Pubbl/distr/stampa

Bradford, England : , : Emerald Publishing, , [2015]

©2015

ISBN

1-78560-553-4

Descrizione fisica

1 online resource (129 p.)

Collana

Circuit World: Volume 41, Issue 3

Disciplina

620.11

Soggetti

Smart materials

Systems engineering

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di contenuto

Cover; EDITORIAL ADVISORY BOARD; Guest editorial; The effect of anticipatory emotions on students' performance in marketing simulations; Partner selection in co-opetition: a three step model; Expressing herself through brands: the Arab woman's perspective; Entrepreneurship and viral development in rural Western Negev in Israel; Perception and motivation to purchase organic products in Mediterranean countries; Biotechnological mergers and acquisitions: features, trends and new dynamics; Determinants of consumer behaviour in novice markets: the case of wine

Sommario/riassunto

The 38th IMAPS-CPMT Poland International Conference was held in Rzeszów-Czarna and took place between the 21st and 24th September 2014. This event was organized by Rzeszów University of Technology. The scope of the Conference covered 'everything in electronics between the chip and the system'. In this special e-book of Circuit World, seven papers have been collected, covering the processes and procedures associated with interconnections and printed circuit boards and their design and manufacture.



2.

Record Nr.

UNINA9910583335203321

Autore

Ueda Jun

Titolo

Cellular Actuators : Modularity and Variability in Muscle-Inspired Actuation

Pubbl/distr/stampa

Oxford : , : Elsevier Science & Technology, , 2017

©2017

ISBN

0-12-803706-7

0-12-803687-7

Descrizione fisica

1 online resource (384 pages)

Altri autori (Persone)

SchultzJoshua A

AsadaHarry

Disciplina

621

Soggetti

Actuators - Design and construction

Piezoelectric devices

Robotics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Front Cover -- Cellular Actuators -- Copyright -- Contents -- List of  gures -- List of tables -- Introduction -- About this book -- Motivation for biologically inspired actuation -- Biological muscles and arti cial muscle-type actuators -- Cellular architecture -- Outline of this book -- Acknowledgment -- Historical overview -- Soft robots for unstructured environments -- Robot actuators -- Redundant actuators -- Generation of natural movements -- Cellular actuator concept -- Inspiration from biological muscles -- Binary control of an actuator array -- Broadcast feedback with stochastic recruitment -- Discussion -- 1 Structure of cellular actuators -- 1.1 Strain ampli ed piezoelectric actuators -- 1.1.1 Piezoelectric materials -- 1.1.2 Strain ampli cation mechanisms -- 1.1.3 MEMS-PZT cellular actuator -- 1.1.4 Discussion -- 1.2 Nested rhombus exponential strain ampli cation -- 1.2.1 Large effective strain piezoelectric actuators -- 1.2.2 Rhombus strain ampli cation mechanisms -- 1.2.3 Nested rhombus structure -- 1.2.4 Properties of ideal nested rhombus PZT actuators -- 1.2.5 Feasibility check for 20% effective strain -- 1.2.6 Discussion -- 1.3 Design of nested-rhombus cellular actuators -- 1.3.1 Nested rhombus



mechanisms with structural  exibility -- 1.3.2 Veri cation and calibration of 3-spring lumped parameter model -- 1.3.3 Prototype two-layer actuator unit -- 1.3.4 Contractile two-layer mechanism design -- 1.3.5 Tweezer-style piezoelectric end-effector -- 1.3.6 Three-layer rhomboidal mechanism design and its application to a camera positioning mechanism -- 1.3.7 Discussion -- 2 Modeling of cellular actuators -- 2.1 Two-port networks for single cell modeling -- 2.1.1 Why a more involved model is necessary -- 2.1.2 Two-port models of strain amplifying compliant mechanisms.

2.1.3 Finding expressions for the immittance parameters using Castigliano's theorem -- 2.1.4 Connecting strain ampli ers and ampli ed stacks together -- 2.1.5 Effectiveness of multiple layers and  gures of merit -- 2.1.6 Amplifying still further with additional strain amplifying mechanisms -- 2.1.7 Discussion -- 2.2 Calibration of two-port network models -- 2.2.1 Model validation by  nite element methods -- 2.2.2 Experimental results -- 2.2.3 Discussion -- 2.3 Modeling of actuator arrays: the nesting theorem: three-layer structure -- 2.3.1 Actuator compliance for nested ampli ed piezoelectric actuators -- 2.3.2 Antagonist pairs of compliant actuators -- 2.3.3 The  rst and second nesting theorem: evaluating the perceived stiffness based on the stiffness of each layer -- 2.3.4 The three-layer structure -- 2.3.5 Discussion -- 2.4 Representation and characterization of complex actuator arrays -- 2.4.1 Graph-theoretic modeling -- 2.4.2 Cell -- 2.4.3 Connecting structures -- 2.4.4 Incidence matrices -- 2.4.5 Fingerprint method basics -- 2.4.6 Fingerprint-to-incidence matrix relationship -- 2.4.7 Automatic generation of actuator array topologies -- 2.4.8 Incidence matrix identity and similarity transforms -- 2.4.9 Robustness analysis -- 2.4.10 Discussion -- 3 Control of cellular actuators -- 3.1 Minimum switching discrete switching vibration suppression -- 3.1.1 Control strategies for  exible mechatronic systems -- 3.1.2 Open-loop switching control methods -- 3.1.3 Redundantly actuated two-layer  exible cellular actuator -- 3.1.4 Determination of switching pattern -- 3.1.5 Illustrative example of switching algorithm -- 3.1.6 Experimental setup -- 3.1.7 Experimental results -- 3.1.8 Non-ideal effects and command robustness -- 3.1.9 Discussion -- 3.2 Broadcast control for cellular actuator arrays -- 3.2.1 Cellular control system.

3.2.2 Broadcast feedback for cellular control system -- 3.2.3 Stability analysis of broadcast feedback -- 3.2.4 Simulation: uniform cellular array -- 3.2.5 Simulation: non-uniform cellular array -- 3.2.6 Discussion -- 3.3 Hysteresis loop control of hysteretic actuator arrays -- 3.3.1 Segmented binary control for hysteretic cellular actuator units -- 3.3.2 Implementation of hysteresis loop control of an SMA unit -- 3.3.3 Transition probability distribution and hysteresis loop -- 3.3.4 Localized stochastic transition -- 3.3.5 Broadcast control approach to the coordination of hysteric cellular actuator array -- 3.3.6 Centralized cell coordination -- 3.3.7 Simulation environment -- 3.3.8 Simulation results -- 3.3.9 Discussion -- 3.4 Supermartingale theory for broadcast control of distributed hysteretic systems -- 3.4.1 Anonymous control and stochastic recruitment -- 3.4.2 System representation -- 3.4.3 Aggregate state, internal dynamics, and observability -- 3.4.4 Control -- 3.4.5 Simulation -- 3.4.6 Robustness against cell failures -- 3.4.7 Contribution of preloading and refraction rule -- 3.4.8 Discussion -- 3.5 Signal-dependent variability of actuator arrays with  oating-point quantization -- 3.5.1 Motor noise and cellular actuation -- 3.5.2 Floating-point quantization of cellular actuator arrays -- 3.5.3 Numerical example -- 3.5.4 Discussion -- 4 Application of cellular actuators -- 4.1 Variable stiffness cellular actuators -- 4.1.1 Variable



stiffness actuators -- 4.1.2 Design of variable stiffness cellular architecture -- 4.1.3 Tunable resonant frequencies -- 4.1.4 Implementation of a PZT-based VSCA -- 4.1.5 Experimental results -- 4.1.6 Discussion -- 4.2 Bipolar buckling actuators -- 4.2.1 Strain ampli cation by structural buckling -- 4.2.2 Buckling for large displacement ampli cation -- 4.2.3 Redirecting stiffness.

4.2.4 Dual buckling unit mechanism -- 4.2.5 Force-displacement analysis -- 4.2.6 Dynamic bipolar motion -- 4.2.7 Prototyping buckling actuators -- 4.2.8 Static performance -- 4.2.9 Dynamic performance -- 4.2.10 Discussion -- 4.3 Self-sensing piezoelectric grasper -- 4.3.1 Self-sensing of ampli ed PZT actuators -- 4.3.2 Force magni cation for tweezer-style piezoelectric end-effector -- 4.3.3 Mechanical modeling -- 4.3.4 Combined electromechanical model of the tweezer device -- 4.3.5 On-site calibration procedure -- 4.3.6 Electrical circuit -- 4.3.7 Results -- 4.3.8 Discussion -- 4.4 Biologically inspired robotic camera orientation system -- 4.4.1 Robotic realization of saccades and smooth-pursuit -- 4.4.2 Dynamics-based oculomotor-visual coordination in rapid camera movements -- 4.4.3 Switching control of camera positioner -- 4.4.4 Dynamics-based blur kernel estimation for motion de-blurring -- 4.4.5 Dynamics-based fast panoramic image stitching -- 4.4.6 Discussion -- 5 Conclusion -- 5.1 Summary and future directions -- 5.1.1 Brief summary -- 5.1.2 Future work -- Nomenclature -- Appendix -- A.1 Modeling of hysteresis -- A.1.1 Hysteresis in piezoelectric actuators -- A.1.2 Hysteresis modeling -- A.2 Structural parameters of tweezer-style end-effector -- A.3 Piezoelectric driving circuit and control system -- A.3.1 Cédrat charge ampli ers -- A.3.2 Discrete switching piezoelectric drive circuit -- A.3.3 Hardware con guration of real-time controller -- A.4 Compliance matrix elements in Section 2.2 -- A.5 SMA cellular actuators -- A.5.1 SMA cellular actuator design -- A.5.2 Damped SMA array -- A.5.3 Dynamic SMA array -- A.5.4 Implementation of  oating-point quantization into dynamic SMA actuator array -- A.5.5 Robotic arm with SMA cellular actuators -- A.6 Deterministic analysis and stability of expectation -- A.7 Proof of Lemma 2 in Section 3.4.

A.8 Recursive computation of probability Pr(Xt|X0) -- A.9 Proof of Lemma 2 in Section 4.1 -- Bibliography -- Index -- Back Cover.