Vai al contenuto principale della pagina
Autore: | Masters Timothy |
Titolo: | Assessing and Improving Prediction and Classification : Theory and Algorithms in C++ / / by Timothy Masters |
Pubblicazione: | Berkeley, CA : , : Apress : , : Imprint : Apress, , 2018 |
Edizione: | 1st ed. 2018. |
Descrizione fisica: | 1 online resource (XX, 517 p. 26 illus., 8 illus. in color.) |
Disciplina: | 005.133 |
Soggetto topico: | Big data |
Artificial intelligence | |
Mathematical statistics | |
Statistics | |
Big Data | |
Artificial Intelligence | |
Probability and Statistics in Computer Science | |
Statistics, general | |
Nota di bibliografia: | Includes bibliographical references and index. |
Nota di contenuto: | 1. Assessment of Numeric Predictions -- 2. Assessment of Class Predictions -- 3. Resampling for Assessing Parameter Estimates -- 4. Resampling for Assessing Prediction and Classification -- 5. Miscellaneous Resampling Techniques -- 6. Combining Numeric Predictions -- 7. Combining Classification Models -- 8. Gaiting Methods -- 9. Information and Entropy -- References. |
Sommario/riassunto: | Carry out practical, real-life assessments of the performance of prediction and classification models written in C++. This book discusses techniques for improving the performance of such models by intelligent resampling of training/testing data, combining multiple models into sophisticated committees, and making use of exogenous information to dynamically choose modeling methodologies. Rigorous statistical techniques for computing confidence in predictions and decisions receive extensive treatment. Finally, the last part of the book is devoted to the use of information theory in evaluating and selecting useful predictors. Special attention is paid to Schreiber's Information Transfer, a recent generalization of Grainger Causality. Well commented C++ code is given for every algorithm and technique. You will: Discover the hidden pitfalls that lurk in the model development process Work with some of the most powerful model enhancement algorithms that have emerged recently Effectively use and incorporate the C++ code in your own data analysis projects Combine classification models to enhance your projects. |
Titolo autorizzato: | Assessing and Improving Prediction and Classification |
ISBN: | 9781484233368 |
1484233360 | |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910300755503321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |