Vai al contenuto principale della pagina

Assessing and Improving Prediction and Classification : Theory and Algorithms in C++ / / by Timothy Masters



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Masters Timothy Visualizza persona
Titolo: Assessing and Improving Prediction and Classification : Theory and Algorithms in C++ / / by Timothy Masters Visualizza cluster
Pubblicazione: Berkeley, CA : , : Apress : , : Imprint : Apress, , 2018
Edizione: 1st ed. 2018.
Descrizione fisica: 1 online resource (XX, 517 p. 26 illus., 8 illus. in color.)
Disciplina: 005.133
Soggetto topico: Big data
Artificial intelligence
Mathematical statistics
Statistics 
Big Data
Artificial Intelligence
Probability and Statistics in Computer Science
Statistics, general
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: 1. Assessment of Numeric Predictions -- 2. Assessment of Class Predictions -- 3. Resampling for Assessing Parameter Estimates -- 4. Resampling for Assessing Prediction and Classification -- 5. Miscellaneous Resampling Techniques -- 6. Combining Numeric Predictions -- 7. Combining Classification Models -- 8. Gaiting Methods -- 9. Information and Entropy -- References.
Sommario/riassunto: Carry out practical, real-life assessments of the performance of prediction and classification models written in C++. This book discusses techniques for improving the performance of such models by intelligent resampling of training/testing data, combining multiple models into sophisticated committees, and making use of exogenous information to dynamically choose modeling methodologies. Rigorous statistical techniques for computing confidence in predictions and decisions receive extensive treatment. Finally, the last part of the book is devoted to the use of information theory in evaluating and selecting useful predictors. Special attention is paid to Schreiber's Information Transfer, a recent generalization of Grainger Causality. Well commented C++ code is given for every algorithm and technique. You will: Discover the hidden pitfalls that lurk in the model development process Work with some of the most powerful model enhancement algorithms that have emerged recently Effectively use and incorporate the C++ code in your own data analysis projects Combine classification models to enhance your projects.
Titolo autorizzato: Assessing and Improving Prediction and Classification  Visualizza cluster
ISBN: 9781484233368
1484233360
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910300755503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui