LEADER 03828nam 22006495 450 001 9910300755503321 005 20200703133616.0 010 $a9781484233368 010 $a1484233360 024 7 $a10.1007/978-1-4842-3336-8 035 $a(CKB)4100000001382202 035 $a(DE-He213)978-1-4842-3336-8 035 $a(MiAaPQ)EBC5205531 035 $a(CaSebORM)9781484233368 035 $a(PPN)222231394 035 $a(OCoLC)1020493769 035 $a(OCoLC)on1020493769 035 $a(EXLCZ)994100000001382202 100 $a20171220d2018 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAssessing and Improving Prediction and Classification $eTheory and Algorithms in C++ /$fby Timothy Masters 205 $a1st ed. 2018. 210 1$aBerkeley, CA :$cApress :$cImprint: Apress,$d2018. 215 $a1 online resource (XX, 517 p. 26 illus., 8 illus. in color.) 311 08$a9781484233351 311 08$a1484233352 320 $aIncludes bibliographical references and index. 327 $a1. Assessment of Numeric Predictions -- 2. Assessment of Class Predictions -- 3. Resampling for Assessing Parameter Estimates -- 4. Resampling for Assessing Prediction and Classification -- 5. Miscellaneous Resampling Techniques -- 6. Combining Numeric Predictions -- 7. Combining Classification Models -- 8. Gaiting Methods -- 9. Information and Entropy -- References. 330 $aCarry out practical, real-life assessments of the performance of prediction and classification models written in C++. This book discusses techniques for improving the performance of such models by intelligent resampling of training/testing data, combining multiple models into sophisticated committees, and making use of exogenous information to dynamically choose modeling methodologies. Rigorous statistical techniques for computing confidence in predictions and decisions receive extensive treatment. Finally, the last part of the book is devoted to the use of information theory in evaluating and selecting useful predictors. Special attention is paid to Schreiber's Information Transfer, a recent generalization of Grainger Causality. Well commented C++ code is given for every algorithm and technique. You will: Discover the hidden pitfalls that lurk in the model development process Work with some of the most powerful model enhancement algorithms that have emerged recently Effectively use and incorporate the C++ code in your own data analysis projects Combine classification models to enhance your projects. 606 $aBig data 606 $aArtificial intelligence 606 $aMathematical statistics 606 $aStatistics  606 $aBig Data$3https://scigraph.springernature.com/ontologies/product-market-codes/I29120 606 $aArtificial Intelligence$3https://scigraph.springernature.com/ontologies/product-market-codes/I21000 606 $aProbability and Statistics in Computer Science$3https://scigraph.springernature.com/ontologies/product-market-codes/I17036 606 $aStatistics, general$3https://scigraph.springernature.com/ontologies/product-market-codes/S0000X 615 0$aBig data. 615 0$aArtificial intelligence. 615 0$aMathematical statistics. 615 0$aStatistics . 615 14$aBig Data. 615 24$aArtificial Intelligence. 615 24$aProbability and Statistics in Computer Science. 615 24$aStatistics, general. 676 $a005.133 700 $aMasters$b Timothy$4aut$4http://id.loc.gov/vocabulary/relators/aut$0105163 801 0$bUMI 801 1$bUMI 906 $aBOOK 912 $a9910300755503321 996 $aAssessing and Improving Prediction and Classification$92528352 997 $aUNINA