Vai al contenuto principale della pagina
| Autore: |
Manjunatha Jamballi G
|
| Titolo: |
Additively Manufactured Electrochemical Sensors : Design, Performance and Applications
|
| Pubblicazione: | Newark : , : John Wiley & Sons, Incorporated, , 2025 |
| ©2025 | |
| Edizione: | 1st ed. |
| Descrizione fisica: | 1 online resource (450 pages) |
| Disciplina: | 681/.2 |
| Soggetto topico: | Detectors - Design and construction |
| Altri autori: |
HussainChaudhery Mustansar
|
| Nota di contenuto: | Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Evaluation of 3D-Printed Technology and Essential of Electrochemical Sensing -- 1.1 Introduction -- 1.2 Types of 3D Printing Techniques for Electrochemical Sensors -- 1.2.1 Stereolithography -- 1.2.2 Fused Deposition Modeling -- 1.2.3 Selective Laser Sintering -- 1.2.4 Inkjet 3D Printing -- 1.3 Materials for 3D Printing Electrochemical Sensors -- 1.3.1 Conductive Polymers -- 1.3.2 Nanomaterials -- 1.4 Case Studies -- 1.4.1 Real-World Examples of 3D Printed Electrochemical Sensors -- 1.4.2 Applications in Healthcare -- 1.4.3 Environmental Monitoring, Industrial Uses -- 1.5 Future Challenges in 3D Printed Electrode -- 1.6 Conclusions -- References -- Chapter 2 Materials, Design Principles, and Need for 3D-Printed Electrochemical Sensors for Monitoring Toxicity -- 2.1 Introduction -- 2.1.1 Electrochemical Sensors -- 2.1.2 Principle of Electrochemical Sensors -- 2.1.3 Electrochemical Sensors for Environmental Monitoring -- 2.2 3D-Printed Electrochemical Sensor -- 2.2.1 Strategies for Fabrication of 3D-Printed Electrodes -- 2.2.2 Hazardous Materials Detectable by Electrochemical Sensors -- 2.3 3D-Printed Fabrication for Making Electrochemical Sensors -- 2.3.1 3D Printing Fabrication Techniques -- 2.3.1.1 Fused Deposition Modeling -- 2.3.1.2 Digital Light Processing -- 2.3.1.3 Direct Ink Writing -- 2.3.1.4 Inkjet Printing -- 2.3.1.5 Other Printing Methods -- 2.3.2 Application of 3D Printing Technology in Environmental Monitoring -- 2.3.2.1 Detection of Per and Polyfluorinated Alkyl Compounds -- 2.3.2.2 Pesticides Detection -- 2.3.2.3 Detection of Chlorophenols and Nitrophenols -- 2.3.2.4 Other Pollutants -- 2.4 Conclusions -- References -- Chapter 3 Nexus of Additive Manufacturing and Sensing for 3D-Printed Electrochemical Sensors -- 3.1 Introduction. |
| 3.2 3D Printed Material Types -- 3.2.1 Materials for Medical Applications of AM -- 3.3 3D Printing Process -- 3.4 Additive Manufacturing Technologies for Polymers -- 3.5 Additive Manufacturing Technologies for Metals -- 3.6 Additive Manufacturing Technologies for Ceramics -- 3.7 Application of AM -- 3.7.1 Plasma-Enhanced Chemical Vapor Deposition (PECVD) Technology -- 3.7.2 The 3D Printing of Nanocomposites for Wearable Biosensors -- 3.7.3 Medical Applications of AM -- References -- Chapter 4 Designing for Optimal Sensing and Microfluidics in Sensor Design for 3D Printed Electrochemical Sensors -- 4.1 Introduction -- 4.2 Methods for Fabrication of 3D Printed Electrode -- 4.3 Three-Dimensional Printing Technologies -- 4.3.1 Fused Deposition Modeling (FDM) -- 4.3.2 Selective Laser Melting (SLM) -- 4.3.3 Stereolithography (SLA) -- 4.3.4 Direct Ink Writing (DIW) -- 4.3.5 Photopolymer Jetting (Polyjet) -- 4.4 Methods of Enhanced Devices for Sensing -- 4.4.1 Single-Step Fabrication -- 4.5 Optimization of Printing Parameters -- 4.5.1 Electrochemical Pretreatment -- 4.5.2 Chemical Pretreatment -- 4.5.3 Biological Pretreatment -- 4.6 Uses of Microfluidic 3D Electrode Sensors -- 4.6.1 Environmental Applications -- 4.6.2 Biological Applications -- 4.7 Conclusion and Prospects for the Future -- References -- Chapter 5 Multi-Material Printing and CAD Tools Usage for 3D-Printed Electrochemical Sensors -- 5.1 Introduction -- 5.2 Materials for Multi-Material Printing -- 5.3 Conductive Materials -- 5.4 Insulating Materials -- 5.5 Sensitive Materials -- 5.6 Printing Techniques -- 5.6.1 Fused Deposition Modeling (FDM) -- 5.7 Stereolithography (SLA) -- 5.8 Direct Ink Writing (DIW) -- 5.9 Inkjet Printing -- 5.10 Design Process Using CAD Tools -- 5.11 Simulation and Optimization -- 5.12 Prototyping and Testing -- 5.13 Applications of 3D-Printed Sensors. | |
| 5.14 Challenges and Future Directions -- 5.15 Conclusion -- References -- Chapter 6 Optimization Techniques for 3D-Printed Electrochemical Sensors -- 6.1 Introduction -- 6.2 Design of Optimization -- 6.3 Selection of Materials for 3D-Printed Electrochemical Sensors -- 6.4 Printing Techniques and Parameters -- 6.4.1 Parameters Involved in Techniques for 3D-Printed Electrochemical Sensors -- 6.4.2 3D Printing Technologies -- 6.5 Applications and Future Scope -- 6.6 Conclusion -- References -- Chapter 7 Performance and Validation for 3D-Printed Electrochemical Sensors -- 7.1 Introduction: Overview of Electrochemical Sensors -- 7.2 Fundamentals of 3D Printing for Electrochemical Sensors -- 7.2.1 Basic Principles of 3D Printing Technologies -- 7.2.2 Materials Used in 3D Printing Electrochemical Sensors -- 7.2.3 Design Considerations for 3D-Printed Sensors -- 7.2.4 Fabrication Techniques -- 7.2.4.1 Fused Deposition Modeling -- 7.2.4.2 Stereolithography -- 7.2.4.3 Digital Light Processing -- 7.2.4.4 Selective Laser Sintering -- 7.2.5 Other 3D Printing Techniques -- 7.2.5.1 Inkjet Printing -- 7.2.5.2 Aerosol Jet Printing -- 7.2.5.3 Binder Jetting -- 7.2.6 Characterization of 3D-Printed Electrochemical Sensors -- 7.2.7 Analysis of Surface Morphology -- 7.2.8 Measurements of Electrical Conductivity -- 7.2.9 Electrochemical Performance Evaluation -- 7.2.9.1 Cyclic Voltammetry -- 7.2.9.2 Chronoamperometry -- 7.2.9.3 Electrochemical Impedance Spectroscopy -- 7.2.9.4 Limits of Detection and Sensitivity -- 7.3 Functionalization of 3D-Printed Sensors -- 7.3.1 Surface Modification Techniques -- 7.3.2 Integration with Biological and Chemical Receptors -- 7.3.3 Enhancing Sensor Selectivity and Specificity -- 7.3.4 Validation and Calibration of Sensors -- 7.3.4.1 Calibration Methods -- 7.3.4.2 Reproducibility and Repeatability Studies. | |
| 7.3.4.3 Standard Protocols for Sensor Validation -- 7.3.5 Applications of 3D-Printed Electrochemical Sensors -- 7.3.5.1 Environmental Monitoring -- 7.3.5.2 Biomedical Diagnostics -- 7.3.5.3 Food and Beverage Analysis -- 7.3.5.4 Industrial Process Control -- 7.4 Challenges and Future Directions -- 7.5 Conclusion -- Acknowledgement -- References -- Chapter 8 Applications of 3D-Printed Electrochemical Sensors in Medical Diagnostics -- Abbreviations -- 8.1 Introduction -- 8.1.1 3D Printing Techniques -- 8.1.1.1 Vat Photopolymerization -- 8.1.1.2 Material Extrusion -- 8.1.1.3 Inkjet Printing -- 8.1.1.4 Bioprinting -- 8.1.2 Electrochemical Methods -- 8.1.2.1 Cyclic Voltammetry -- 8.1.2.2 Differential Pulse Voltammetry -- 8.1.2.3 Square Wave Voltammetry -- 8.1.2.4 Electrochemical Impedance Spectroscopy -- 8.1.2.5 Chronoamperometry -- 8.2 Applications of 3D-Printed Electrochemical Sensors in Medical Diagnostics -- 8.2.1 3D-Printed Electrochemical Sensors Integrated in Point-of-Care Diagnostics -- 8.2.2 Integration of 3D-Printed Electrochemical Sensors in Wearable and Implantable Devices -- 8.2.3 Integration of 3D-Printed Electrochemical Sensors in Lab-on-a-Chip Platforms -- 8.2.4 Pharmaceutical and Biologically Important Compound Detection Sensors Based on 3D-Printed Electrochemical Sensors -- 8.3 Emerging Trends and Future Applications -- 8.4 Conclusion -- References -- Chapter 9 Application of 3D-Printed Electrochemical Sensors in Environmental Monitoring -- 9.1 Introduction -- 9.1.1 3D Printing Techniques -- 9.1.2 Application of 3D-Printed Electrochemical Sensors in Environmental Monitoring -- 9.2 Conclusion -- References -- Chapter 10 Applications of 3D-Printed Electrochemical Sensors in Food Quality Control -- 10.1 Introduction to 3D-Printed Electrochemical Sensors -- 10.1.1 Basics of Electrochemical Sensors. | |
| 10.1.2 Integration of 3D Printing with Electrochemical Sensing -- 10.2 Principles of Electrochemical Sensing in Food Quality Control -- 10.2.1 Electrochemical Detection Methods -- 10.2.1.1 Voltammetry -- 10.2.1.2 Amperometry -- 10.2.1.3 Potentiometry -- 10.2.1.4 Conductometry -- 10.2.1.5 Electrochemical Impedance Spectroscopy -- 10.2.2 Target Analytes in Food Quality -- 10.2.2.1 Pesticides -- 10.2.2.2 Pathogens -- 10.2.2.3 Heavy Metals -- 10.2.2.4 Mycotoxin -- 10.2.2.5 Food Spoilage -- 10.3 Mechanisms of Detection and Measurement -- 10.4 Applications in Food Quality Control -- 10.4.1 Detection of Contaminants -- 10.4.2 Monitoring Freshness and Spoilage -- 10.4.3 Analysis of Nutritional Content -- 10.5 Case Studies -- 10.5.1 Detection of Pesticide Residue Contamination -- 10.5.2 Bacterial Detection in Food -- 10.5.3 Antioxidant Sensing and Monitoring -- 10.6 Advantages and Limitations of 3D-Printed Electrochemical Sensors -- 10.7 Future Trends and Innovations -- 10.7.1 Current Trends -- 10.7.2 Future Innovations -- 10.8 Summary -- References -- Chapter 11 Applications of 3D-Printed Electrochemical Sensors in Energy and Industrial Processes -- 11.1 Introduction -- 11.2 Types of 3D Printing Techniques -- 11.2.1 Stereolithography -- 11.2.1.1 The Stereolithography Gives a Summary of the Advantages and Limitations -- 11.2.1.2 Examples of Electrochemical Sensors Fabricated Using SLA -- 11.2.2 Fused Deposition Modeling -- 11.2.2.1 Operation of the FDM Equipment -- 11.2.3 Selective Laser Sintering -- 11.2.4 Inkjet 3D Printing -- 11.3 Materials for 3D Printing Electrochemical Sensors -- 11.3.1 Conductive Polymers -- 11.3.1.1 Applications of Conducting Polymers -- 11.3.1.2 3D Printing of Conducting Polymers -- 11.3.2 Nanomaterials -- 11.4 Applications in Electrochemical Energy Storage -- 11.5 Applications in Environmental Analysis. | |
| 11.5.1 Detection of a Small Organic Materials. | |
| Sommario/riassunto: | This book is an essential guide to mastering 3D printed electrochemical sensors, offering a comprehensive roadmap from foundational principles and fabrication techniques to cutting-edge applications and real-world solutions. |
| Titolo autorizzato: | Additively Manufactured Electrochemical Sensors ![]() |
| ISBN: | 1-394-30343-2 |
| 1-394-30338-6 | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9911022470903321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |