LEADER 00754nam0-22002651i-450- 001 990001281850403321 035 $a000128185 035 $aFED01000128185 035 $a(Aleph)000128185FED01 035 $a000128185 100 $a20000920d1975----km-y0itay50------ba 101 0 $aeng 200 1 $aUnivalent Functions- Selected Topics- by Schober Glenn 205 $a$a 210 $aBerlin [etc.]$cSpringer-Verlag$d1975 215 $aLecture Notes in Mathematics 700 1$aSchober,$bGlenn$058483 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990001281850403321 952 $aC-20-(478$b16961$fMA1 959 $aMA1 996 $aUnivalent Functions- Selected Topics- by Schober Glenn$9384386 997 $aUNINA DB $aING01 LEADER 00491nam 2200157z- 450 001 9910712171403321 035 $a(CKB)5470000002490396 035 $a(EXLCZ)995470000002490396 100 $a20230509c2018uuuu -u- - 101 0 $aeng 200 10$aRolling element bearing dynamics in wind turbines 210 $cNational Renewable Energy Laboratory$aGolden, Colo 906 $aBOOK 912 $a9910712171403321 996 $aRolling element bearing dynamics in wind turbines$93355712 997 $aUNINA LEADER 03521nam 2200745 a 450 001 9910957164503321 005 20200520144314.0 010 $a9786611121112 010 $a9781281121110 010 $a1281121118 010 $a9789812708328 010 $a9812708324 035 $a(CKB)1000000000334186 035 $a(EBL)312316 035 $a(OCoLC)476099634 035 $a(SSID)ssj0000121375 035 $a(PQKBManifestationID)11910132 035 $a(PQKBTitleCode)TC0000121375 035 $a(PQKBWorkID)10110819 035 $a(PQKB)11291902 035 $a(WSP)00006250 035 $a(Au-PeEL)EBL312316 035 $a(CaPaEBR)ebr10188712 035 $a(CaONFJC)MIL112111 035 $a(MiAaPQ)EBC312316 035 $a(Perlego)849781 035 $a(FR-PaCSA)10208869 035 $a(FRCYB10208869)10208869 035 $a(EXLCZ)991000000000334186 100 $a20061204d2007 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aChina's elite politics $epolitical transition and power balancing /$fBo Zhiyue 205 $a1st ed. 210 $aHackensack, N.J. $cWorld Scientific$dc2007 215 $a1 online resource (467 p.) 225 1 $aSeries on contemporary China ;$vv. 8 300 $aDescription based upon print version of record. 311 08$a9789812700411 311 08$a9789814603720 311 08$a9814603724 311 08$a9789812700414 311 08$a9812700412 320 $aIncludes bibliographical references and index. 327 $aContents; List of Tables and Figures; Acknowledgments; Introduction: Toward a Power Balancing Model on Elite Politics in China; WINNER-TAKES-ALL MODEL; BANDWAGON POLITICS MODEL; BALANCE-OF-POWER POLITICS MODEL; POWER BALANCING MODEL; POWER BALANCING MODEL AND ITS COMPETING MODELS; CHAPTER OUTLINE; Part I: Political Transition and Power Balance; 1. Power Transfer from Jiang Zemin to Hu Jintao at the Sixteenth Party Congress; 2. The Sixteenth Central Committee: Technocrats in Command?; 3. Balance of Formal Power; 4. Balance of Factional Power; Part II: Dynamics of Factional Politics 327 $a5. Politics of SARS 6. Ideological Institutionalization and Politics of Development; 7. Jiang Zemin's Complete Retirement; 8. Hu Jintao's Power Consolidation; Conclusion: Institutionalization and Political Transition; Index 330 $aChina's Elite Politics provides a new theoretical perspective on elite politics in China and uses this theoretical perspective to explain power transfer from Jiang Zemin to Hu Jintao and political dynamics between different factional groups since the Sixteenth Party Congress of November 2002. It explains the transition in structural terms, presents characteristics of China's political elites, and analyzes the balance of power among formal institutions as well as among factional groups. It also examines political interactions between Jiang Zemin and his cronies on the one side and Hu Jintao and 410 0$aSeries on contemporary China ;$vv. 8. 606 $aElite (Social sciences)$zChina 606 $aBalance of power 607 $aChina$xPolitics and government$y1949- 615 0$aElite (Social sciences) 615 0$aBalance of power. 676 $a320.951 700 $aBo$b Zhiyue$0280936 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910957164503321 996 $aChina's elite politics$9709896 997 $aUNINA LEADER 02900nam 22005535 450 001 9911018751003321 005 20250724130243.0 010 $a981-9669-17-0 024 7 $a10.1007/978-981-96-6917-2 035 $a(MiAaPQ)EBC32234068 035 $a(Au-PeEL)EBL32234068 035 $a(CKB)39710498100041 035 $a(DE-He213)978-981-96-6917-2 035 $a(EXLCZ)9939710498100041 100 $a20250724d2025 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aDevelopment Geography /$fby Xiangzheng Deng, Malin Song 205 $a1st ed. 2025. 210 1$aSingapore :$cSpringer Nature Singapore :$cImprint: Springer,$d2025. 215 $a1 online resource (691 pages) 311 08$a981-9669-16-2 327 $aDisciplines of Development Geography -- Theories and methodologies of Development Geography -- Geographic differences in regional development -- Spatial pats of development in less developed regions -- Agglomeration and convergence of regional development process in developed regions. 330 $aThis book provides practical insights into regional development, focusing on how economic, social, and environmental factors contribute to disparities across regions. It examines pressing global issues such as income inequality, climate change, and sustainable growth, offering strategies for addressing these challenges in both developed and developing countries. The book combines theoretical frameworks with case studies, policy analysis, and interdisciplinary methods, making it both academically rigorous and highly applicable for real-world solutions. Key features include in-depth regional comparisons, climate adaptation strategies, and detailed policy recommendations. The reader will gain a comprehensive understanding of how to navigate the complexities of regional development and implement effective, sustainable policies. Ideal for scholars, policymakers, and development practitioners, this book is designed to inspire informed decision-making and foster balanced growth across regions. 606 $aEnvironmental geography 606 $aSustainability 606 $aEnvironmental sciences$xSocial aspects 606 $aIntegrated Geography 606 $aSustainability 606 $aEnvironmental Social Sciences 615 0$aEnvironmental geography. 615 0$aSustainability. 615 0$aEnvironmental sciences$xSocial aspects. 615 14$aIntegrated Geography. 615 24$aSustainability. 615 24$aEnvironmental Social Sciences. 676 $a910 700 $aDeng$b Xiangzheng$01062429 701 $aSong$b Malin$01427830 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911018751003321 996 $aDevelopment Geography$94414876 997 $aUNINA LEADER 11057nam 22005533 450 001 9911022470903321 005 20251005110023.0 010 $a1-394-30343-2 010 $a1-394-30338-6 024 7 $a10.1002/9781394303434 035 $a(CKB)40384151600041 035 $a(MiAaPQ)EBC32272773 035 $a(Au-PeEL)EBL32272773 035 $a(OCoLC)1535359188 035 $a(CaSebORM)9781394303366 035 $a(OCoLC)1534178307 035 $a(OCoLC-P)1534178307 035 $a(EXLCZ)9940384151600041 100 $a20250905d2025 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAdditively Manufactured Electrochemical Sensors $eDesign, Performance and Applications 205 $a1st ed. 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2025. 210 4$dİ2025. 215 $a1 online resource (450 pages) 311 08$a1-394-30336-X 327 $aCover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Evaluation of 3D-Printed Technology and Essential of Electrochemical Sensing -- 1.1 Introduction -- 1.2 Types of 3D Printing Techniques for Electrochemical Sensors -- 1.2.1 Stereolithography -- 1.2.2 Fused Deposition Modeling -- 1.2.3 Selective Laser Sintering -- 1.2.4 Inkjet 3D Printing -- 1.3 Materials for 3D Printing Electrochemical Sensors -- 1.3.1 Conductive Polymers -- 1.3.2 Nanomaterials -- 1.4 Case Studies -- 1.4.1 Real-World Examples of 3D Printed Electrochemical Sensors -- 1.4.2 Applications in Healthcare -- 1.4.3 Environmental Monitoring, Industrial Uses -- 1.5 Future Challenges in 3D Printed Electrode -- 1.6 Conclusions -- References -- Chapter 2 Materials, Design Principles, and Need for 3D-Printed Electrochemical Sensors for Monitoring Toxicity -- 2.1 Introduction -- 2.1.1 Electrochemical Sensors -- 2.1.2 Principle of Electrochemical Sensors -- 2.1.3 Electrochemical Sensors for Environmental Monitoring -- 2.2 3D-Printed Electrochemical Sensor -- 2.2.1 Strategies for Fabrication of 3D-Printed Electrodes -- 2.2.2 Hazardous Materials Detectable by Electrochemical Sensors -- 2.3 3D-Printed Fabrication for Making Electrochemical Sensors -- 2.3.1 3D Printing Fabrication Techniques -- 2.3.1.1 Fused Deposition Modeling -- 2.3.1.2 Digital Light Processing -- 2.3.1.3 Direct Ink Writing -- 2.3.1.4 Inkjet Printing -- 2.3.1.5 Other Printing Methods -- 2.3.2 Application of 3D Printing Technology in Environmental Monitoring -- 2.3.2.1 Detection of Per and Polyfluorinated Alkyl Compounds -- 2.3.2.2 Pesticides Detection -- 2.3.2.3 Detection of Chlorophenols and Nitrophenols -- 2.3.2.4 Other Pollutants -- 2.4 Conclusions -- References -- Chapter 3 Nexus of Additive Manufacturing and Sensing for 3D-Printed Electrochemical Sensors -- 3.1 Introduction. 327 $a3.2 3D Printed Material Types -- 3.2.1 Materials for Medical Applications of AM -- 3.3 3D Printing Process -- 3.4 Additive Manufacturing Technologies for Polymers -- 3.5 Additive Manufacturing Technologies for Metals -- 3.6 Additive Manufacturing Technologies for Ceramics -- 3.7 Application of AM -- 3.7.1 Plasma-Enhanced Chemical Vapor Deposition (PECVD) Technology -- 3.7.2 The 3D Printing of Nanocomposites for Wearable Biosensors -- 3.7.3 Medical Applications of AM -- References -- Chapter 4 Designing for Optimal Sensing and Microfluidics in Sensor Design for 3D Printed Electrochemical Sensors -- 4.1 Introduction -- 4.2 Methods for Fabrication of 3D Printed Electrode -- 4.3 Three-Dimensional Printing Technologies -- 4.3.1 Fused Deposition Modeling (FDM) -- 4.3.2 Selective Laser Melting (SLM) -- 4.3.3 Stereolithography (SLA) -- 4.3.4 Direct Ink Writing (DIW) -- 4.3.5 Photopolymer Jetting (Polyjet) -- 4.4 Methods of Enhanced Devices for Sensing -- 4.4.1 Single-Step Fabrication -- 4.5 Optimization of Printing Parameters -- 4.5.1 Electrochemical Pretreatment -- 4.5.2 Chemical Pretreatment -- 4.5.3 Biological Pretreatment -- 4.6 Uses of Microfluidic 3D Electrode Sensors -- 4.6.1 Environmental Applications -- 4.6.2 Biological Applications -- 4.7 Conclusion and Prospects for the Future -- References -- Chapter 5 Multi-Material Printing and CAD Tools Usage for 3D-Printed Electrochemical Sensors -- 5.1 Introduction -- 5.2 Materials for Multi-Material Printing -- 5.3 Conductive Materials -- 5.4 Insulating Materials -- 5.5 Sensitive Materials -- 5.6 Printing Techniques -- 5.6.1 Fused Deposition Modeling (FDM) -- 5.7 Stereolithography (SLA) -- 5.8 Direct Ink Writing (DIW) -- 5.9 Inkjet Printing -- 5.10 Design Process Using CAD Tools -- 5.11 Simulation and Optimization -- 5.12 Prototyping and Testing -- 5.13 Applications of 3D-Printed Sensors. 327 $a5.14 Challenges and Future Directions -- 5.15 Conclusion -- References -- Chapter 6 Optimization Techniques for 3D-Printed Electrochemical Sensors -- 6.1 Introduction -- 6.2 Design of Optimization -- 6.3 Selection of Materials for 3D-Printed Electrochemical Sensors -- 6.4 Printing Techniques and Parameters -- 6.4.1 Parameters Involved in Techniques for 3D-Printed Electrochemical Sensors -- 6.4.2 3D Printing Technologies -- 6.5 Applications and Future Scope -- 6.6 Conclusion -- References -- Chapter 7 Performance and Validation for 3D-Printed Electrochemical Sensors -- 7.1 Introduction: Overview of Electrochemical Sensors -- 7.2 Fundamentals of 3D Printing for Electrochemical Sensors -- 7.2.1 Basic Principles of 3D Printing Technologies -- 7.2.2 Materials Used in 3D Printing Electrochemical Sensors -- 7.2.3 Design Considerations for 3D-Printed Sensors -- 7.2.4 Fabrication Techniques -- 7.2.4.1 Fused Deposition Modeling -- 7.2.4.2 Stereolithography -- 7.2.4.3 Digital Light Processing -- 7.2.4.4 Selective Laser Sintering -- 7.2.5 Other 3D Printing Techniques -- 7.2.5.1 Inkjet Printing -- 7.2.5.2 Aerosol Jet Printing -- 7.2.5.3 Binder Jetting -- 7.2.6 Characterization of 3D-Printed Electrochemical Sensors -- 7.2.7 Analysis of Surface Morphology -- 7.2.8 Measurements of Electrical Conductivity -- 7.2.9 Electrochemical Performance Evaluation -- 7.2.9.1 Cyclic Voltammetry -- 7.2.9.2 Chronoamperometry -- 7.2.9.3 Electrochemical Impedance Spectroscopy -- 7.2.9.4 Limits of Detection and Sensitivity -- 7.3 Functionalization of 3D-Printed Sensors -- 7.3.1 Surface Modification Techniques -- 7.3.2 Integration with Biological and Chemical Receptors -- 7.3.3 Enhancing Sensor Selectivity and Specificity -- 7.3.4 Validation and Calibration of Sensors -- 7.3.4.1 Calibration Methods -- 7.3.4.2 Reproducibility and Repeatability Studies. 327 $a7.3.4.3 Standard Protocols for Sensor Validation -- 7.3.5 Applications of 3D-Printed Electrochemical Sensors -- 7.3.5.1 Environmental Monitoring -- 7.3.5.2 Biomedical Diagnostics -- 7.3.5.3 Food and Beverage Analysis -- 7.3.5.4 Industrial Process Control -- 7.4 Challenges and Future Directions -- 7.5 Conclusion -- Acknowledgement -- References -- Chapter 8 Applications of 3D-Printed Electrochemical Sensors in Medical Diagnostics -- Abbreviations -- 8.1 Introduction -- 8.1.1 3D Printing Techniques -- 8.1.1.1 Vat Photopolymerization -- 8.1.1.2 Material Extrusion -- 8.1.1.3 Inkjet Printing -- 8.1.1.4 Bioprinting -- 8.1.2 Electrochemical Methods -- 8.1.2.1 Cyclic Voltammetry -- 8.1.2.2 Differential Pulse Voltammetry -- 8.1.2.3 Square Wave Voltammetry -- 8.1.2.4 Electrochemical Impedance Spectroscopy -- 8.1.2.5 Chronoamperometry -- 8.2 Applications of 3D-Printed Electrochemical Sensors in Medical Diagnostics -- 8.2.1 3D-Printed Electrochemical Sensors Integrated in Point-of-Care Diagnostics -- 8.2.2 Integration of 3D-Printed Electrochemical Sensors in Wearable and Implantable Devices -- 8.2.3 Integration of 3D-Printed Electrochemical Sensors in Lab-on-a-Chip Platforms -- 8.2.4 Pharmaceutical and Biologically Important Compound Detection Sensors Based on 3D-Printed Electrochemical Sensors -- 8.3 Emerging Trends and Future Applications -- 8.4 Conclusion -- References -- Chapter 9 Application of 3D-Printed Electrochemical Sensors in Environmental Monitoring -- 9.1 Introduction -- 9.1.1 3D Printing Techniques -- 9.1.2 Application of 3D-Printed Electrochemical Sensors in Environmental Monitoring -- 9.2 Conclusion -- References -- Chapter 10 Applications of 3D-Printed Electrochemical Sensors in Food Quality Control -- 10.1 Introduction to 3D-Printed Electrochemical Sensors -- 10.1.1 Basics of Electrochemical Sensors. 327 $a10.1.2 Integration of 3D Printing with Electrochemical Sensing -- 10.2 Principles of Electrochemical Sensing in Food Quality Control -- 10.2.1 Electrochemical Detection Methods -- 10.2.1.1 Voltammetry -- 10.2.1.2 Amperometry -- 10.2.1.3 Potentiometry -- 10.2.1.4 Conductometry -- 10.2.1.5 Electrochemical Impedance Spectroscopy -- 10.2.2 Target Analytes in Food Quality -- 10.2.2.1 Pesticides -- 10.2.2.2 Pathogens -- 10.2.2.3 Heavy Metals -- 10.2.2.4 Mycotoxin -- 10.2.2.5 Food Spoilage -- 10.3 Mechanisms of Detection and Measurement -- 10.4 Applications in Food Quality Control -- 10.4.1 Detection of Contaminants -- 10.4.2 Monitoring Freshness and Spoilage -- 10.4.3 Analysis of Nutritional Content -- 10.5 Case Studies -- 10.5.1 Detection of Pesticide Residue Contamination -- 10.5.2 Bacterial Detection in Food -- 10.5.3 Antioxidant Sensing and Monitoring -- 10.6 Advantages and Limitations of 3D-Printed Electrochemical Sensors -- 10.7 Future Trends and Innovations -- 10.7.1 Current Trends -- 10.7.2 Future Innovations -- 10.8 Summary -- References -- Chapter 11 Applications of 3D-Printed Electrochemical Sensors in Energy and Industrial Processes -- 11.1 Introduction -- 11.2 Types of 3D Printing Techniques -- 11.2.1 Stereolithography -- 11.2.1.1 The Stereolithography Gives a Summary of the Advantages and Limitations -- 11.2.1.2 Examples of Electrochemical Sensors Fabricated Using SLA -- 11.2.2 Fused Deposition Modeling -- 11.2.2.1 Operation of the FDM Equipment -- 11.2.3 Selective Laser Sintering -- 11.2.4 Inkjet 3D Printing -- 11.3 Materials for 3D Printing Electrochemical Sensors -- 11.3.1 Conductive Polymers -- 11.3.1.1 Applications of Conducting Polymers -- 11.3.1.2 3D Printing of Conducting Polymers -- 11.3.2 Nanomaterials -- 11.4 Applications in Electrochemical Energy Storage -- 11.5 Applications in Environmental Analysis. 327 $a11.5.1 Detection of a Small Organic Materials. 330 $aThis book is an essential guide to mastering 3D printed electrochemical sensors, offering a comprehensive roadmap from foundational principles and fabrication techniques to cutting-edge applications and real-world solutions. 606 $aDetectors$xDesign and construction 615 0$aDetectors$xDesign and construction. 676 $a681/.2 700 $aManjunatha$b Jamballi G$01741227 701 $aHussain$b Chaudhery Mustansar$0975260 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911022470903321 996 $aAdditively Manufactured Electrochemical Sensors$94430370 997 $aUNINA