Vai al contenuto principale della pagina

Biomaterials for Bone Tissue Engineering



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Sanz José Antonio Visualizza persona
Titolo: Biomaterials for Bone Tissue Engineering Visualizza cluster
Pubblicazione: MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica: 1 electronic resource (244 p.)
Soggetto non controllato: bone morphogenesis proteins
finite element
bone tissue engineering
electrically active implants
prediction marker
vertebra
direct current electric field
loose sintering
Lattice Boltzmann method
Pelvis
automatic segmentation
MSCs
additive manufacturing
finite element method
bioelectromagnetism
optimization
scaffold design
cone beam computed tomography
computational modelling
bone regeneration
oxygen delivery
biomaterials
bone tissue
spark plasma sintering
critical size defect
musculoskeletal modelling
resonance frequency analysis
minipig
numerical methods in bioengineering
computational fluid dynamics
maxillofacial
osteoporosis
sliding window
osseointegration
mass transfer
substrate-mediated electrical stimulation
Fixation design
dental implants
human dental pulp stem cells
numerical results
elastoplasticity
bone tissue regeneration
finite-element simulation
3D-printed implant
selective laser melting
Lagrangian scalar tracking
cortical bone
micromechanics
trabeculae
finite element modelling
damage
titanium
powder metallurgy
pelvis
biomechanics
computational mechanobiology
culturing protocol
bone adaptation
stem cell
Bone tumor
trabecular bone score
Xenografts
triply periodic minimal surfaces
computed tomography
multiscale analysis
cartilage
digital image correlation
osteo-differentiation
wollastonite
transport
finite element analysis
bone marrow
fracture risk
von Mises stress
electric stimulation
mechanical behaviour
adipogenesis
biomaterial applications
computational mechanics
Ti6Al4V scaffolds
finite elements
Otsu's method
3D virtual surgical plan
Sommario/riassunto: Bone tissue engineering aims to develop artificial bone substitutes that partially or totally restore the natural regeneration capability of bone tissue lost under circumstances of injury, significant defects, or diseases such as osteoporosis. In this context, biomaterials are the keystone of the methodology. Biomaterials for bone tissue engineering have evolved from biocompatible materials that mimic the physical and chemical environment of bone tissue to a new generation of materials that actively interacts with the physiological environment, accelerating bone tissue growth. Mathematical modelling and simulation are important tools in the overall methodology. This book presents an overview of the current investigations and recent contributions in the field of bone tissue engineering. It includes several successful examples of multidisciplinary collaboration in this transversal area of research. The book is intended for students, researchers, and professionals of a number of disciplines, such as engineering, mathematics, physics, chemistry, biomedicine, biology, and veterinary. The book is composed of an editorial section and 16 original research papers authored by leading researchers of this discipline from different laboratories across the world
Titolo autorizzato: Biomaterials for Bone Tissue Engineering  Visualizza cluster
ISBN: 3-03928-966-7
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910404077303321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui