Vai al contenuto principale della pagina

Advanced Methods of Power Load Forecasting



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: García-Díaz J. Carlos Visualizza persona
Titolo: Advanced Methods of Power Load Forecasting Visualizza cluster
Pubblicazione: Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica: 1 online resource (128 p.)
Soggetto topico: Physics
Research and information: general
Soggetto non controllato: Artificial Neural Network
attention
bidirectional long short-term memory
CNN
deep learning
deep neural network
demand
DIMS
encoder decoder
forecast
galvanizing
Holt-Winters model
irregular
load
long-term forecasting
LSTM
machine learning
multi-layer stacked
multiple seasonality
neural network
online training
parameters tuning
peak load
power system
prophet model
Prophet model
recurrent neural network
short-term electrical load forecasting
short-term load forecast
short-term load forecasting
statistical analysis
time series
Persona (resp. second.): TrullÓscar
García-DíazJ. Carlos
Sommario/riassunto: This reprint introduces advanced prediction models focused on power load forecasting. Models based on artificial intelligence and more traditional approaches are shown, demonstrating the real possibilities of use to improve prediction in this field. Models of LSTM neural networks, LSTM networks with a SESDA architecture, in even LSTM-CNN are used. On the other hand, multiple seasonal Holt-Winters models with discrete seasonality and the application of the Prophet method to demand forecasting are presented. These models are applied in different circumstances and show highly positive results. This reprint is intended for both researchers related to energy management and those related to forecasting, especially power load.
Titolo autorizzato: Advanced Methods of Power Load Forecasting  Visualizza cluster
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910576883403321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui