Vai al contenuto principale della pagina

Bio-Based Polymers for Engineered Green Materials



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Schnabel Thomas Visualizza persona
Titolo: Bio-Based Polymers for Engineered Green Materials Visualizza cluster
Pubblicazione: MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica: 1 online resource (568 p.)
Soggetto topico: History of engineering and technology
Soggetto non controllato: adsorption
adsorption capacity
alginate sponge
alkali lignin
anionic surfactants
Anti-bacterial silver nanoparticle
antifouling
Artemisia vulgaris
asphalt rubber
autoxidation
bacterial cellulose
benzoyl cellulose
bio-asphalt
bio-based
Bio-based foams
bio-inspired interfaces
bio-nanocomposites
biocomposite
Bioflex
biomass resources
bioplastics
biopolymers
cationic dyes
cellulose
cellulose nanocrystals
cellulose nanofibers
cement
chemical composition
chitosan
compatibility
composites
copper coating
corn starch
cost
crosslinked microparticles
delignification
dense structure
differential scanning calorimetry
dimensional stability
dimer acid
dissolution
electrical resistance
electroless deposition
electrospinning
emulsion-solvent evaporation method
endothermic effect
enzymatic saccharification
Escherichia coli
extrusion-compounding
feast-famine
fiber-cement
film
films
fractionation
free-radical polymerization
galactoglucomannan
GC-MS
graphene oxide
H2O2 bleaching treatment
Hatscheck process
headspace solid phase microextraction
heat treatment
heavy metals
hemicellulose
HSQC-NMR
humidity sensor
hybrid composites
hybrid nonisocyanate polyurethane
hydrogel
hydrotropic treatment
imidazolium
immobilized TEMPO
ionic liquid
iron chelation
kaempferol
kenaf fiber
knotwood
larixol
latex state
lignin
lignin content
lignin-carbohydrate complex
lignin-containing cellulose nanofibrils
lignocellulose
lignocellulosic nanofibrils
liquid natural rubber
lyocell fiber
mechanical degradation
mechanical properties
melt condensation
membrane
metal binding
metal chloride
methylene blue
Microbial nutrient
microcellulose fiber
microencapsulated phase change material (MPCM)
microstructure
mixed microbial cultures
mixing sequence
n/a
nanobiocomposites
nanocellulose fibers
nanocelluloses
nanoclays
natural fibers
nuclear magnetic resonance
one-pot synthesis
ONP fibers
orange waste
osteoblast proliferation
paper-based scaffolds
Peptone
PHA
PHBV
phenanthrene
photodegradation
physical property
physicochemical properties
pollutant adsorbents
poly(lactic acid)
poly(lactic acid) and composite films
polycaprolactone
polydopamine coating
polyhydroxyalkanoates
polylactic acid
polylactic acid (PLA)
polymeric composites
polysaccharides
porosity
porous structure
precipitation
pulp fibers
pyrene
pyrolysis mechanism
recycling
resource recovery
robust fiber network
SAXS
scanning electron microscope
sensitivity
silanization
silkworm cocoons
skincare
Solanyl
solution casting
solvent- and catalyst-free
Staphylococcus aureus
stearoyl cellulose
storage stability
strain sensor
structural plastics
structure-property relationship
surface modification
tannin
tannin polymer
tannin-furanic foam
taxifolin
TEMPO oxidation
thermal degradation
thermal gravimetric analysis
thermal properties
thermal stability
thermoplastic starch
thermosetting polymers
TiO2 anatase
tissue engineering
toughening
transparent wood
transport properties
tung oil
two-step lyophilization
ultrafiltration
unsaturated polyester resins
UV light
vibrational spectroscopy
volatiles
waste biomass
wastewater treatments
water resistance
WAXS
wood
wood modification
workability
X-ray diffraction
Persona (resp. second.): TondiGianluca
Sommario/riassunto: With daily signals, Nature is communicating us that its unconscious wicked exploitation is no more sustainable. Our socio-economic system focuses on production increasing without considering the consequences. We are intoxicating ourselves on a daily bases just to allow the system to perpetuate itself. The time to switch into more natural solutions is come and the scientific community is ready to offer more natural product with comparable performance then the market products we are used to deal with. This book collects a broad set of scientific examples in which research groups from all over the world, aim to replace fossil fuel-based solutions with biomass derived materials. In here, some of the most innovative developments in the field of bio-materials are reported considering topics which goes from biomass valorization to the synthesis of high preforming bio-based materials.
Titolo autorizzato: Bio-Based Polymers for Engineered Green Materials  Visualizza cluster
ISBN: 3-03928-926-8
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910404081003321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui