Vai al contenuto principale della pagina
| Autore: |
Frank Matthias T
|
| Titolo: |
Knowledge-Driven Harmonization of Sensor Observations: Exploiting Linked Open Data for IoT Data Streams
|
| Pubblicazione: | Karlsruhe, : KIT Scientific Publishing, 2021 |
| Descrizione fisica: | 1 online resource (236 p.) |
| Soggetto topico: | Economics |
| Soggetto non controllato: | corporate knowledge graph |
| data stream processing | |
| Datenstromverarbeitung | |
| Internet der Dinge | |
| Internet of Things | |
| Linked Open Data | |
| sensor data harmonization | |
| Sensordatenharmonisierung | |
| Wissensgraph | |
| Sommario/riassunto: | The rise of the Internet of Things leads to an unprecedented number of continuous sensor observations that are available as IoT data streams. Harmonization of such observations is a labor-intensive task due to heterogeneity in format, syntax, and semantics. We aim to reduce the effort for such harmonization tasks by employing a knowledge-driven approach. To this end, we pursue the idea of exploiting the large body of formalized public knowledge represented as statements in Linked Open Data. |
| Altri titoli varianti: | Knowledge-Driven Harmonization of Sensor Observations |
| Titolo autorizzato: | Knowledge-Driven Harmonization of Sensor Observations: Exploiting Linked Open Data for IoT Data Streams ![]() |
| ISBN: | 1000128146 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910493731503321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |