LEADER 01954nam 2200433z- 450 001 9910493731503321 005 20231214133152.0 010 $a1000128146 035 $a(CKB)5590000000537507 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/71661 035 $a(EXLCZ)995590000000537507 100 $a20202108d2021 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aKnowledge-Driven Harmonization of Sensor Observations: Exploiting Linked Open Data for IoT Data Streams 210 $aKarlsruhe$cKIT Scientific Publishing$d2021 215 $a1 electronic resource (236 p.) 311 $a3-7315-1076-6 330 $aThe rise of the Internet of Things leads to an unprecedented number of continuous sensor observations that are available as IoT data streams. Harmonization of such observations is a labor-intensive task due to heterogeneity in format, syntax, and semantics. We aim to reduce the effort for such harmonization tasks by employing a knowledge-driven approach. To this end, we pursue the idea of exploiting the large body of formalized public knowledge represented as statements in Linked Open Data. 517 $aKnowledge-Driven Harmonization of Sensor Observations 606 $aEconomics$2bicssc 610 $aInternet der Dinge 610 $aLinked Open Data 610 $aDatenstromverarbeitung 610 $aWissensgraph 610 $aSensordatenharmonisierung 610 $aInternet of Things 610 $adata stream processing 610 $acorporate knowledge graph 610 $asensor data harmonization 615 7$aEconomics 700 $aFrank$b Matthias T$4auth$01331133 906 $aBOOK 912 $a9910493731503321 996 $aKnowledge-Driven Harmonization of Sensor Observations: Exploiting Linked Open Data for IoT Data Streams$93040246 997 $aUNINA