Vai al contenuto principale della pagina
| Autore: |
Douglas Ronald G.
|
| Titolo: |
C-Algebra Extensions and K-Homology. (AM-95), Volume 95 / / Ronald G. Douglas
|
| Pubblicazione: | Princeton, NJ : , : Princeton University Press, , [2016] |
| ©1980 | |
| Descrizione fisica: | 1 online resource (94 pages) : illustrations |
| Disciplina: | 512/.55 |
| Soggetto topico: | C*-algebras |
| K-theory | |
| Algebra, Homological | |
| Soggetto non controllato: | Addition |
| Affine transformation | |
| Algebraic topology | |
| Atiyah–Singer index theorem | |
| Automorphism | |
| Banach algebra | |
| Bijection | |
| Boundary value problem | |
| Bundle map | |
| C*-algebra | |
| Calculation | |
| Cardinal number | |
| Category of abelian groups | |
| Characteristic class | |
| Chern class | |
| Clifford algebra | |
| Coefficient | |
| Cohomology | |
| Compact operator | |
| Completely positive map | |
| Contact geometry | |
| Continuous function | |
| Corollary | |
| Diagram (category theory) | |
| Diffeomorphism | |
| Differentiable manifold | |
| Differential operator | |
| Dimension (vector space) | |
| Dimension function | |
| Dimension | |
| Direct integral | |
| Direct proof | |
| Eigenvalues and eigenvectors | |
| Equivalence class | |
| Equivalence relation | |
| Essential spectrum | |
| Euler class | |
| Exact sequence | |
| Existential quantification | |
| Fiber bundle | |
| Finite group | |
| Fredholm operator | |
| Fredholm | |
| Free abelian group | |
| Fundamental class | |
| Fundamental group | |
| Hardy space | |
| Hermann Weyl | |
| Hilbert space | |
| Homological algebra | |
| Homology (mathematics) | |
| Homomorphism | |
| Homotopy | |
| Ideal (ring theory) | |
| Inner automorphism | |
| Irreducible representation | |
| K-group | |
| K-theory | |
| Lebesgue space | |
| Locally compact group | |
| Maximal compact subgroup | |
| Michael Atiyah | |
| Monomorphism | |
| Morphism | |
| Natural number | |
| Natural transformation | |
| Normal operator | |
| Operator algebra | |
| Operator norm | |
| Operator theory | |
| Orthogonal group | |
| Pairing | |
| Piecewise linear manifold | |
| Polynomial | |
| Pontryagin class | |
| Positive and negative parts | |
| Positive map | |
| Pseudo-differential operator | |
| Quaternion | |
| Quotient algebra | |
| Self-adjoint operator | |
| Self-adjoint | |
| Simply connected space | |
| Smooth structure | |
| Special case | |
| Stein manifold | |
| Strong topology | |
| Subalgebra | |
| Subgroup | |
| Subset | |
| Summation | |
| Tangent bundle | |
| Theorem | |
| Todd class | |
| Topology | |
| Torsion subgroup | |
| Unitary operator | |
| Universal coefficient theorem | |
| Variable (mathematics) | |
| Von Neumann algebra | |
| Note generali: | Bibliographic Level Mode of Issuance: Monograph |
| Nota di bibliografia: | Includes bibliographical references and index. |
| Nota di contenuto: | Frontmatter -- Contents -- Preface -- Chapter 1. An Overview -- Chapter 2. Ext as a Group -- Chapter 3. Ext as a Homotopy Functor -- Chapter 4. Generalized Homology Theory and Periodicity -- Chapter 5. Ext as K-Homology -- Chapter 6. Index Theorems snd Novikov's Higher Signatures -- References -- Index -- Index of Symbols -- Backmatter |
| Sommario/riassunto: | Recent developments in diverse areas of mathematics suggest the study of a certain class of extensions of C*-algebras. Here, Ronald Douglas uses methods from homological algebra to study this collection of extensions. He first shows that equivalence classes of the extensions of the compact metrizable space X form an abelian group Ext (X). Second, he shows that the correspondence X ⃗ Ext (X) defines a homotopy invariant covariant functor which can then be used to define a generalized homology theory. Establishing the periodicity of order two, the author shows, following Atiyah, that a concrete realization of K-homology is obtained. |
| Titolo autorizzato: | -Algebra Extensions and K-Homology. (AM-95), Volume 95 ![]() |
| ISBN: | 1-4008-8146-3 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910154752903321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |