LEADER 06172nam 22018015 450 001 9910154752903321 005 20190708092533.0 010 $a1-4008-8146-3 024 7 $a10.1515/9781400881468 035 $a(CKB)3710000000620139 035 $a(SSID)ssj0001651243 035 $a(PQKBManifestationID)16426223 035 $a(PQKBTitleCode)TC0001651243 035 $a(PQKBWorkID)14782694 035 $a(PQKB)11732407 035 $a(MiAaPQ)EBC4738508 035 $a(DE-B1597)467950 035 $a(OCoLC)1024046392 035 $a(OCoLC)979728672 035 $a(DE-B1597)9781400881468 035 $a(EXLCZ)993710000000620139 100 $a20190708d2016 fg 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aC*-Algebra Extensions and K-Homology. (AM-95), Volume 95 /$fRonald G. Douglas 210 1$aPrinceton, NJ : $cPrinceton University Press, $d[2016] 210 4$dİ1980 215 $a1 online resource (94 pages) $cillustrations 225 0 $aAnnals of Mathematics Studies ;$v228 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-691-08265-0 311 $a0-691-08266-9 320 $aIncludes bibliographical references and index. 327 $tFrontmatter -- $tContents -- $tPreface -- $tChapter 1. An Overview -- $tChapter 2. Ext as a Group -- $tChapter 3. Ext as a Homotopy Functor -- $tChapter 4. Generalized Homology Theory and Periodicity -- $tChapter 5. Ext as K-Homology -- $tChapter 6. Index Theorems snd Novikov's Higher Signatures -- $tReferences -- $tIndex -- $tIndex of Symbols -- $tBackmatter 330 $aRecent developments in diverse areas of mathematics suggest the study of a certain class of extensions of C*-algebras. Here, Ronald Douglas uses methods from homological algebra to study this collection of extensions. He first shows that equivalence classes of the extensions of the compact metrizable space X form an abelian group Ext (X). Second, he shows that the correspondence X ? Ext (X) defines a homotopy invariant covariant functor which can then be used to define a generalized homology theory. Establishing the periodicity of order two, the author shows, following Atiyah, that a concrete realization of K-homology is obtained. 410 0$aAnnals of mathematics studies ;$vNumber 95. 606 $aC*-algebras 606 $aK-theory 606 $aAlgebra, Homological 610 $aAddition. 610 $aAffine transformation. 610 $aAlgebraic topology. 610 $aAtiyah?Singer index theorem. 610 $aAutomorphism. 610 $aBanach algebra. 610 $aBijection. 610 $aBoundary value problem. 610 $aBundle map. 610 $aC*-algebra. 610 $aCalculation. 610 $aCardinal number. 610 $aCategory of abelian groups. 610 $aCharacteristic class. 610 $aChern class. 610 $aClifford algebra. 610 $aCoefficient. 610 $aCohomology. 610 $aCompact operator. 610 $aCompletely positive map. 610 $aContact geometry. 610 $aContinuous function. 610 $aCorollary. 610 $aDiagram (category theory). 610 $aDiffeomorphism. 610 $aDifferentiable manifold. 610 $aDifferential operator. 610 $aDimension (vector space). 610 $aDimension function. 610 $aDimension. 610 $aDirect integral. 610 $aDirect proof. 610 $aEigenvalues and eigenvectors. 610 $aEquivalence class. 610 $aEquivalence relation. 610 $aEssential spectrum. 610 $aEuler class. 610 $aExact sequence. 610 $aExistential quantification. 610 $aFiber bundle. 610 $aFinite group. 610 $aFredholm operator. 610 $aFredholm. 610 $aFree abelian group. 610 $aFundamental class. 610 $aFundamental group. 610 $aHardy space. 610 $aHermann Weyl. 610 $aHilbert space. 610 $aHomological algebra. 610 $aHomology (mathematics). 610 $aHomomorphism. 610 $aHomotopy. 610 $aIdeal (ring theory). 610 $aInner automorphism. 610 $aIrreducible representation. 610 $aK-group. 610 $aK-theory. 610 $aLebesgue space. 610 $aLocally compact group. 610 $aMaximal compact subgroup. 610 $aMichael Atiyah. 610 $aMonomorphism. 610 $aMorphism. 610 $aNatural number. 610 $aNatural transformation. 610 $aNormal operator. 610 $aOperator algebra. 610 $aOperator norm. 610 $aOperator theory. 610 $aOrthogonal group. 610 $aPairing. 610 $aPiecewise linear manifold. 610 $aPolynomial. 610 $aPontryagin class. 610 $aPositive and negative parts. 610 $aPositive map. 610 $aPseudo-differential operator. 610 $aQuaternion. 610 $aQuotient algebra. 610 $aSelf-adjoint operator. 610 $aSelf-adjoint. 610 $aSimply connected space. 610 $aSmooth structure. 610 $aSpecial case. 610 $aStein manifold. 610 $aStrong topology. 610 $aSubalgebra. 610 $aSubgroup. 610 $aSubset. 610 $aSummation. 610 $aTangent bundle. 610 $aTheorem. 610 $aTodd class. 610 $aTopology. 610 $aTorsion subgroup. 610 $aUnitary operator. 610 $aUniversal coefficient theorem. 610 $aVariable (mathematics). 610 $aVon Neumann algebra. 615 0$aC*-algebras. 615 0$aK-theory. 615 0$aAlgebra, Homological. 676 $a512/.55 700 $aDouglas$b Ronald G., $054969 801 0$bDE-B1597 801 1$bDE-B1597 906 $aBOOK 912 $a9910154752903321 996 $a-Algebra Extensions and K-Homology. (AM-95), Volume 95$92988187 997 $aUNINA