Vai al contenuto principale della pagina

Ansätze zur lokalen Bayes'schen Fusion von Informationsbeiträgen heterogener Quellen



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Sander Jennifer Visualizza persona
Titolo: Ansätze zur lokalen Bayes'schen Fusion von Informationsbeiträgen heterogener Quellen Visualizza cluster
Pubblicazione: Karlsruhe, : KIT Scientific Publishing, 2021
Descrizione fisica: 1 online resource (342 p.)
Soggetto topico: Maths for computer scientists
Soggetto non controllato: Bayes'sche Theorie
Bayesian theory
heterogene Informationsquellen
heterogeneous information sources
information fusion
Informationsfusion
Maximum Entropy principle
Prinzip der Maximalen Entropie
uncertainty
Unsicherheit
Sommario/riassunto: The solution of various tasks benefits from information fusion or even requires it. The Bayesian fusion methodology is clear, well-founded and fulfills the essential requirements for a meaningful methodology also for fusing the contributions of heterogeneous information sources. In many practically relevant tasks, Bayesian methods cause high, often unacceptable effort. In the work, novel approaches to cope with Bayesian fusion in such situations are formulated and investigated.
Titolo autorizzato: Ansätze zur lokalen Bayes’schen Fusion von Informationsbeiträgen heterogener Quellen  Visualizza cluster
ISBN: 1000125447
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Tedesco
Record Nr.: 9910476899203321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui