LEADER 01996nam 2200457z- 450 001 9910476899203321 005 20210528 010 $a1000125447 035 $a(CKB)5470000000567031 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/70092 035 $a(oapen)doab70092 035 $a(EXLCZ)995470000000567031 100 $a20202105d2021 |y 0 101 0 $ager 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aAnsa?tze zur lokalen Bayes'schen Fusion von Informationsbeitra?gen heterogener Quellen 210 $aKarlsruhe$cKIT Scientific Publishing$d2021 215 $a1 online resource (342 p.) 225 1 $aKarlsruher Schriften zur Anthropomatik 311 08$a3-7315-1062-6 330 $aThe solution of various tasks benefits from information fusion or even requires it. The Bayesian fusion methodology is clear, well-founded and fulfills the essential requirements for a meaningful methodology also for fusing the contributions of heterogeneous information sources. In many practically relevant tasks, Bayesian methods cause high, often unacceptable effort. In the work, novel approaches to cope with Bayesian fusion in such situations are formulated and investigated. 606 $aMaths for computer scientists$2bicssc 610 $aBayes'sche Theorie 610 $aBayesian theory 610 $aheterogene Informationsquellen 610 $aheterogeneous information sources 610 $ainformation fusion 610 $aInformationsfusion 610 $aMaximum Entropy principle 610 $aPrinzip der Maximalen Entropie 610 $auncertainty 610 $aUnsicherheit 615 7$aMaths for computer scientists 700 $aSander$b Jennifer$4auth$01300211 906 $aBOOK 912 $a9910476899203321 996 $aAnsätze zur lokalen Bayes?schen Fusion von Informationsbeiträgen heterogener Quellen$93025439 997 $aUNINA