Vai al contenuto principale della pagina

Strong Rigidity of Locally Symmetric Spaces. (AM-78), Volume 78 / / G. Daniel Mostow



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Mostow G. Daniel Visualizza persona
Titolo: Strong Rigidity of Locally Symmetric Spaces. (AM-78), Volume 78 / / G. Daniel Mostow Visualizza cluster
Pubblicazione: Princeton, NJ : , : Princeton University Press, , [2016]
©1974
Descrizione fisica: 1 online resource (205 pages)
Disciplina: 516/.36
Soggetto topico: Riemannian manifolds
Symmetric spaces
Lie groups
Rigidity (Geometry)
Soggetto non controllato: Addition
Adjoint representation
Affine space
Approximation
Automorphism
Axiom
Big O notation
Boundary value problem
Cohomology
Compact Riemann surface
Compact space
Conjecture
Constant curvature
Corollary
Counterexample
Covering group
Covering space
Curvature
Diameter
Diffeomorphism
Differentiable function
Dimension
Direct product
Division algebra
Ergodicity
Erlangen program
Existence theorem
Exponential function
Finitely generated group
Fundamental domain
Fundamental group
Geometry
Half-space (geometry)
Hausdorff distance
Hermitian matrix
Homeomorphism
Homomorphism
Hyperplane
Identity matrix
Inner automorphism
Isometry group
Jordan algebra
Matrix multiplication
Metric space
Morphism
Möbius transformation
Normal subgroup
Normalizing constant
Partially ordered set
Permutation
Projective space
Riemann surface
Riemannian geometry
Sectional curvature
Self-adjoint
Set function
Smoothness
Stereographic projection
Subgroup
Subset
Summation
Symmetric space
Tangent space
Tangent vector
Theorem
Topology
Tubular neighborhood
Two-dimensional space
Unit sphere
Vector group
Weyl group
Note generali: Bibliographic Level Mode of Issuance: Monograph
Nota di bibliografia: Includes bibliographical references.
Nota di contenuto: Frontmatter -- Contents -- §1. Introduction -- §2. Algebraic Preliminaries -- §3. The Geometry of χ : Preliminaries -- §4. A Metric Definition of the Maximal Boundary -- §5. Polar Parts -- §6. A Basic Inequality -- §7. Geometry of Neighboring Flats -- §8. Density Properties of Discrete Subgroups -- §8. Density Properties of Discrete Subgroups -- § 10. Pseudo Isometries of Simply Connected Spaces with Negative Curvature -- §11. Polar Regular Elements in Co-Compact Γ -- § 12. Pseudo-Isometric Invariance of Semi-Simple and Unipotent Elements -- §13. The Basic Approximation -- §14. The Map ∅̅ -- §15. The Boundary Map ∅0 -- §16. Tits Geometries -- §17. Rigidity for R-rank > 1 -- §18. The Restriction to Simple Groups -- §19. Spaces of R-rank 1 -- §20. The Boundary Semi-Metric -- §21. Quasi-Conformal Mappings Over K and Absolute Continuity on Almost All R-Circles -- §22. The Effect of Ergodicity -- §23. R-Rank 1 Rigidity Proof Concluded -- §24. Concluding Remarks -- Bibliography -- Backmatter
Sommario/riassunto: Locally symmetric spaces are generalizations of spaces of constant curvature. In this book the author presents the proof of a remarkable phenomenon, which he calls "strong rigidity": this is a stronger form of the deformation rigidity that has been investigated by Selberg, Calabi-Vesentini, Weil, Borel, and Raghunathan.The proof combines the theory of semi-simple Lie groups, discrete subgroups, the geometry of E. Cartan's symmetric Riemannian spaces, elements of ergodic theory, and the fundamental theorem of projective geometry as applied to Tit's geometries. In his proof the author introduces two new notions having independent interest: one is "pseudo-isometries"; the other is a notion of a quasi-conformal mapping over the division algebra K (K equals real, complex, quaternion, or Cayley numbers). The author attempts to make the account accessible to readers with diverse backgrounds, and the book contains capsule descriptions of the various theories that enter the proof.
Titolo autorizzato: Strong Rigidity of Locally Symmetric Spaces. (AM-78), Volume 78  Visualizza cluster
ISBN: 1-4008-8183-8
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910154743303321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Annals of mathematics studies ; ; Number 78.