Vai al contenuto principale della pagina

Deterministic Sampling for Nonlinear Dynamic State Estimation



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Gilitschenski Igor Visualizza persona
Titolo: Deterministic Sampling for Nonlinear Dynamic State Estimation Visualizza cluster
Pubblicazione: KIT Scientific Publishing, 2016
Descrizione fisica: 1 online resource (XVI, 167 p. p.)
Soggetto non controllato: Density Approximation
DichteapproximationStochastic Filtering
Directional Statistics
Richtungsstatistik
Sensor Data Fusion
Sensordatenfusion
Stochastische Filterung
Sommario/riassunto: The goal of this work is improving existing and suggesting novel filtering algorithms for nonlinear dynamic state estimation. Nonlinearity is considered in two ways: First, propagation is improved by proposing novel methods for approximating continuous probability distributions by discrete distributions defined on the same continuous domain. Second, nonlinear underlying domains are considered by proposing novel filters that inherently take the underlying geometry of these domains into account.
Titolo autorizzato: Deterministic Sampling for Nonlinear Dynamic State Estimation  Visualizza cluster
ISBN: 1000051670
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910346774403321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui