Vai al contenuto principale della pagina
Autore: | Lusztig George |
Titolo: | Characters of Reductive Groups over a Finite Field. (AM-107), Volume 107 / / George Lusztig |
Pubblicazione: | Princeton, NJ : , : Princeton University Press, , [2016] |
©1984 | |
Descrizione fisica: | 1 online resource (408 pages) : illustrations |
Disciplina: | 512/.2 |
Soggetto topico: | Finite groups |
Finite fields (Algebra) | |
Characters of groups | |
Soggetto non controllato: | Addition |
Algebra representation | |
Algebraic closure | |
Algebraic group | |
Algebraic variety | |
Algebraically closed field | |
Bijection | |
Borel subgroup | |
Cartan subalgebra | |
Character table | |
Character theory | |
Characteristic function (probability theory) | |
Characteristic polynomial | |
Class function (algebra) | |
Classical group | |
Coefficient | |
Cohomology with compact support | |
Cohomology | |
Combination | |
Complex number | |
Computation | |
Conjugacy class | |
Connected component (graph theory) | |
Coxeter group | |
Cyclic group | |
Cyclotomic polynomial | |
David Kazhdan | |
Dense set | |
Derived category | |
Diagram (category theory) | |
Dimension | |
Direct sum | |
Disjoint sets | |
Disjoint union | |
E6 (mathematics) | |
Eigenvalues and eigenvectors | |
Endomorphism | |
Equivalence class | |
Equivalence relation | |
Existential quantification | |
Explicit formula | |
Explicit formulae (L-function) | |
Fiber bundle | |
Finite field | |
Finite group | |
Fourier transform | |
Green's function | |
Group (mathematics) | |
Group action | |
Group representation | |
Harish-Chandra | |
Hecke algebra | |
Identity element | |
Integer | |
Irreducible representation | |
Isomorphism class | |
Jordan decomposition | |
Line bundle | |
Linear combination | |
Local system | |
Mathematical induction | |
Maximal torus | |
Module (mathematics) | |
Monodromy | |
Morphism | |
Orthonormal basis | |
P-adic number | |
Parametrization | |
Parity (mathematics) | |
Partially ordered set | |
Perverse sheaf | |
Pointwise | |
Polynomial | |
Quantity | |
Rational point | |
Reductive group | |
Ree group | |
Schubert variety | |
Scientific notation | |
Semisimple Lie algebra | |
Sheaf (mathematics) | |
Simple group | |
Simple module | |
Special case | |
Standard basis | |
Subset | |
Subtraction | |
Summation | |
Surjective function | |
Symmetric group | |
Tensor product | |
Theorem | |
Two-dimensional space | |
Unipotent representation | |
Vector bundle | |
Vector space | |
Verma module | |
Weil conjecture | |
Weyl group | |
Zariski topology | |
Classificazione: | SK 260 |
Note generali: | Bibliographic Level Mode of Issuance: Monograph |
Nota di bibliografia: | Includes bibliographical references and indexes. |
Nota di contenuto: | Frontmatter -- TABLE OF CONTENTS -- INTRODUCTION -- 1. COMPUTATION OF LOCAL INTERSECTION COHOMOLOGY OF CERTAIN LINE BUNDLES OVER A SCHUBERT VARIETY -- 2. LOCAL INTERSECTION COHOMOLOGY WITH TWISTED COEFFICIENTS OF THE CLOSURES OF THE VARIETIES XW -- 3. GLOBAL INTERSECTION COHOMOLOGY WITH TWISTED COEFFICIENTS OF THE VARIETY X̅W -- 4. REPRESENTATIONS OF WEYL GROUPS -- 5. CELLS IN WEYL GROUPS -- 6. AN INTEGRALITY THEOREM AND A DISJOINTNESS THEOREM -- 7. SOME EXCEPTIONAL GROUPS -- 8. DECOMPOSITION OF INDUCED REPRESENTATIONS -- 9. CLASSICAL GROUPS -- 10. COMPLETION OF THE PROOF OF THEOREM 4.23 -- 11. EIGENVALUES OF FROBENIUS -- 12. ON THE STRUCTURE OF LEFT CELLS -- 13. RELATIONS WITH CONJUGACY CLASSES -- 14. CONCLUDING REMARKS -- APPENDIX -- REFERENCES -- SUBJECT INDEX -- NOTATION INDEX -- Backmatter |
Sommario/riassunto: | This book presents a classification of all (complex)irreducible representations of a reductive group withconnected centre, over a finite field. To achieve this,the author uses etale intersection cohomology, anddetailed information on representations of Weylgroups. |
Titolo autorizzato: | Characters of Reductive Groups over a Finite Field. (AM-107), Volume 107 |
ISBN: | 1-4008-8177-3 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910154752803321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |