|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910154752803321 |
|
|
Autore |
Lusztig George |
|
|
Titolo |
Characters of Reductive Groups over a Finite Field. (AM-107), Volume 107 / / George Lusztig |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Princeton, NJ : , : Princeton University Press, , [2016] |
|
©1984 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (408 pages) : illustrations |
|
|
|
|
|
|
Collana |
|
Annals of Mathematics Studies ; ; 278 |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Finite groups |
Finite fields (Algebra) |
Characters of groups |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Bibliographic Level Mode of Issuance: Monograph |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and indexes. |
|
|
|
|
|
|
Nota di contenuto |
|
Frontmatter -- TABLE OF CONTENTS -- INTRODUCTION -- 1. COMPUTATION OF LOCAL INTERSECTION COHOMOLOGY OF CERTAIN LINE BUNDLES OVER A SCHUBERT VARIETY -- 2. LOCAL INTERSECTION COHOMOLOGY WITH TWISTED COEFFICIENTS OF THE CLOSURES OF THE VARIETIES XW -- 3. GLOBAL INTERSECTION COHOMOLOGY WITH TWISTED COEFFICIENTS OF THE VARIETY X̅W -- 4. REPRESENTATIONS OF WEYL GROUPS -- 5. CELLS IN WEYL GROUPS -- 6. AN INTEGRALITY THEOREM AND A DISJOINTNESS THEOREM -- 7. SOME EXCEPTIONAL GROUPS -- 8. DECOMPOSITION OF INDUCED REPRESENTATIONS -- 9. CLASSICAL GROUPS -- 10. COMPLETION OF THE PROOF OF THEOREM 4.23 -- 11. EIGENVALUES OF FROBENIUS -- 12. ON THE STRUCTURE OF LEFT CELLS -- 13. RELATIONS WITH CONJUGACY CLASSES -- 14. CONCLUDING REMARKS -- APPENDIX -- REFERENCES -- SUBJECT INDEX -- NOTATION INDEX -- Backmatter |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This book presents a classification of all (complex)irreducible representations of a reductive group withconnected centre, over a finite field. To achieve this,the author uses etale intersection cohomology, anddetailed information on representations of Weylgroups. |
|
|
|
|
|
|
|