top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Current Trends in Computational Modeling for Drug Discovery / / edited by Supratik Kar, Jerzy Leszczynski
Current Trends in Computational Modeling for Drug Discovery / / edited by Supratik Kar, Jerzy Leszczynski
Autore Kar Supratik
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (311 pages)
Disciplina 541.2
615.19
Altri autori (Persone) LeszczynskiJerzy
Collana Challenges and Advances in Computational Chemistry and Physics
Soggetto topico Drugs—Design
Molecules—Models
Chemistry—Data processing
Medicinal chemistry
Pharmacology
Structure-Based Drug Design
Molecular Modelling
Computational Chemistry
Medicinal Chemistry
ISBN 3-031-33871-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto SBDD and its challenges -- In silico discovery of class IIb HDAC inhibitors: The state of art -- Role of computational modelling in drug discovery for Alzheimer’s disease -- Computational Modeling in the Development of Antiviral Agents -- Targeted computational approaches to identify potential inhibitors for Nipah virus -- Role of Computational Modelling in Drug Discovery for HIV -- Recent insight of the emerging severe fever with thrombocytopenia syndrome virus: drug discovery, therapeutic options, and limitations -- Computational toxicological aspects in drug design and discovery, screening adverse effects -- Read-Across and RASAR tools from the DTC Laboratory -- Databases for Drug Discovery and Development.
Record Nr. UNINA-9910734828903321
Kar Supratik  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Native Epoxide und Epoxidharze - ein Beitrag zur ökologischen Chemie / / von Bernhard Adler
Native Epoxide und Epoxidharze - ein Beitrag zur ökologischen Chemie / / von Bernhard Adler
Autore Adler Bernhard
Edizione [1st ed. 2017.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer Spektrum, , 2017
Descrizione fisica 1 online resource (VII, 147 S. 49 Abb.)
Disciplina 668.374
Soggetto topico Green chemistry
Environmental chemistry
Chemistry, Technical
Chemistry—Data processing
Green Chemistry
Environmental Chemistry
Industrial Chemistry
Computational Chemistry
ISBN 3-662-55614-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ger
Nota di contenuto 1 Einleitung -- 2 Computersimulationen zur Mutagenität von synthetischen und nativen Epoxiden -- 3 Native Öle und Fette -- 4 Native Epoxide, ihre Herstellung und Eigenschaften -- 5 1K-Formierungen -- 6 2K-Formierungen -- 7 Native Polymerschäume -- 8 Methylester und Methylesterepoxide -- 9 Verwertung der Ab- und Byprodukte -- 10 Biodegradation und Hydrolysebeständigkeit -- 11 Epoxide aus ökologischer Chemie -- 12 Analytik, technische Kenndaten und Produktdatenblätter -- 13 Anhang.
Record Nr. UNINA-9910483091403321
Adler Bernhard  
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer Spektrum, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
QSPR/QSAR Analysis Using SMILES and Quasi-SMILES / / edited by Alla P. Toropova, Andrey A. Toropov
QSPR/QSAR Analysis Using SMILES and Quasi-SMILES / / edited by Alla P. Toropova, Andrey A. Toropov
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (470 pages)
Disciplina 542.85
Collana Challenges and Advances in Computational Chemistry and Physics
Soggetto topico Chemistry—Data processing
Quantum physics
Computer simulation
Chemistry, Physical and theoretical
Model theory
Computational Chemistry
Quantum Simulations
Theoretical Chemistry
Model Theory
ISBN 3-031-28401-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I - Theoretical conceptions -- Fundamentals of mathematical modeling of chemicals through QSPR/QSAR -- Molecular descriptors in QSPR/QSAR modeling -- Application of SMILES to cheminformatics and generation of optimum SMILES descriptors using CORAL software -- Part II - SMILES based descriptors -- All SMILES Variational Autoencoder for Molecular Property Prediction and Optimization -- SMILES based bioactivity descriptors to model the anti-Dengue virus activity: A case study -- Part III - SMILES for QSPR/QSAR with optimal descriptors -- QSPR models for prediction of redox potentials using optimal descriptors -- Building up QSPR for polymers endpoints by using SMILES-based optimal descriptors -- Part IV - Quasi-SMILES for QSPR/QSAR -- Quasi-SMILES based QSPR/QSAR modeling -- Quasi-SMILES Based Mathematical Model for the Prediction of Percolation Threshold for Conductive Polymer Composites -- On the possibility to build up the QSAR model of different kinds of inhibitory activity for a large list of Human Intestinal Transporter using quasi-SMILES -- Quasi-SMILES as a tool for peptide QSAR modelling -- Part V - SMILES and quasi-SMILES for QSPR/QSAR -- SMILES and quasi-SMILES descriptors in QSAR/QSPR modeling of diverse materials properties in safety and environment application -- SMILES and quasi-SMILES in QSAR Modeling for Prediction of Physicochemical and Biochemical Properties -- Part VI - Possible ways of nano-QSPR/nano-QSAR evolution -- The CORAL software as a tool to develop models for nanomaterials’ endpoints -- Employing Quasi-SMILES notation in development of nano-QSPR models for nanofluids -- Part VII - Possible ways of QSPR/QSAR evolution in the future -- On complementary approaches of assessing the predictive potential of QSPR/QSAR-models -- CORAL: Predictions of Quality of Rice based on Retention index using a combination of Correlation intensity index and Consensus modelling.
Record Nr. UNINA-9910731465303321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui