Vai al contenuto principale della pagina
Autore: | Frank Matthias T |
Titolo: | Knowledge-Driven Harmonization of Sensor Observations: Exploiting Linked Open Data for IoT Data Streams |
Pubblicazione: | Karlsruhe, : KIT Scientific Publishing, 2021 |
Descrizione fisica: | 1 electronic resource (236 p.) |
Soggetto topico: | Economics |
Soggetto non controllato: | Internet der Dinge |
Linked Open Data | |
Datenstromverarbeitung | |
Wissensgraph | |
Sensordatenharmonisierung | |
Internet of Things | |
data stream processing | |
corporate knowledge graph | |
sensor data harmonization | |
Sommario/riassunto: | The rise of the Internet of Things leads to an unprecedented number of continuous sensor observations that are available as IoT data streams. Harmonization of such observations is a labor-intensive task due to heterogeneity in format, syntax, and semantics. We aim to reduce the effort for such harmonization tasks by employing a knowledge-driven approach. To this end, we pursue the idea of exploiting the large body of formalized public knowledge represented as statements in Linked Open Data. |
Altri titoli varianti: | Knowledge-Driven Harmonization of Sensor Observations |
Titolo autorizzato: | Knowledge-Driven Harmonization of Sensor Observations: Exploiting Linked Open Data for IoT Data Streams |
ISBN: | 1000128146 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910493731503321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |